Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 47
Number of page(s) 11
Published online 05 December 2018
  • Abele D, Burlando B, Viarengo A, Pörtner H. 1998. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Phys B 120: 425–435. [CrossRef] [Google Scholar]
  • Alscher RG, Erturk N, Heath LS. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53: 1331–1341. [CrossRef] [PubMed] [Google Scholar]
  • Bafana A, Dutt S, Kumar A, Kumar S, Ahuja PS. 2011. The basic and applied aspects of superoxide dismutase. J Mol Catal B 68: 129–138. [CrossRef] [Google Scholar]
  • Barata C, Varo I, Navarro JC, Arun S, Porte C. 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol 140: 175–186. [CrossRef] [PubMed] [Google Scholar]
  • Bartoli M, Nizzoli D, Longhi D, Laini A, Viaroli P. 2007. Impact of a trout farm on the water quality of an Apennine creek from daily budgets of nutrients. Chem Ecol 23: 1–11. [CrossRef] [Google Scholar]
  • Bauernfeind E, Soldan, T. 2012. The Mayflies of Europe (Ephemeroptera). Denmark: Apollo Books, 778 p. [Google Scholar]
  • Bennett C. 2007. A seven year of the life cycle of the mayfly Ephemera danica. Freshw Biol 27: 3–14. [Google Scholar]
  • Berra E, Forcella M, Giacchini R, Marziali L, Rossaro B, Parenti P. 2004. Evaluation of enzyme biomarkers in freshwater invertebrates from Taro and Ticino river Italy., Ann Limnol Int J Lim 40: 169–180. [CrossRef] [Google Scholar]
  • Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. 2012. Oxidative stress and antioxidant defence. World Allergy Organ J 5: 9–19. [CrossRef] [PubMed] [Google Scholar]
  • Boaventura R, Pedro AM, Coimbra J, Lencastre E. 1997. Trout farm effluents: characterization and impact on the receiving streams. Environ Pollut 95: 379–387. [Google Scholar]
  • Bocchetti R, Virno Lamberti C, Pisanelli B, Razzetti EM, Maggi C, Catalano B, Sesta G, Martuccio G, Gabellini M, Regoli F. 2008. Seasonal variations of exposure biomarkers, oxidative stress responses and cell damage in the clams, Tapes philippinarum, and mussels, Mytilus galloprovincialis, from Adriatic Sea. Mar Environ Res 66: 24–26. [CrossRef] [PubMed] [Google Scholar]
  • Bonada N, Prat N, Rash VH, Statzner B. 2006. Developments in aquatic insect biomonitoring: a commparative analysis of recent approaches. Annu Rev Entomol 51: 495–523. [CrossRef] [PubMed] [Google Scholar]
  • Boyd CE. 2003. Guidelines for aquaculture effluent management at the farm-level. Aquaculture 226: 101–112. [Google Scholar]
  • Božanić M, Perić-Mataruga V, Todorović D, Živić M, Stojanović K, Radojević A, Živić I. 2017. Uticaj pastrmskog ribnjaka na antioksidativnu odbranu larvi Ephemera danica (Insecta: Ephemeroptera). XI Simpozijum entomologa Srbije 2017, sa međunarodnim učešćem, Goč, 17–21 Septembar, Zbornih plenarnih referata i rezimea, 87–88 (in Serbian). [Google Scholar]
  • Bradford MM. 1976. A rapid and sensitive method for the quantity of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254. [Google Scholar]
  • Briand J, Jacquet S, Bernard C, Humbert J. 2003. Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Vet Res 34: 361–377. [CrossRef] [PubMed] [Google Scholar]
  • Brittain JE, Sartori M. 2003. Ephemeroptera (mayflies). In: Resh VH, Cardé RT, eds. Encyclopedia of Insects. Amsterdam: Academic Press, pp. 373–380. [Google Scholar]
  • Buchner T, Abele-Oeschger D, Theede H. 1996. Aspects of antioxidant status in the polychaete Arenicola marina: tissue and subcellular distribution, and reaction to environmental hydrogen peroxide and elevated temperatures. Mar Ecol Prog Ser 143: 141–150. [Google Scholar]
  • Buonocore G, Perrone S, Tataranno ML. 2010. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med 15: 186–190. [Google Scholar]
  • Camargo JA, Alonso A, Salamanca A. 2005. Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58: 1255–1267. [CrossRef] [PubMed] [Google Scholar]
  • Camargo JA, Gonzalo C, Alonso Á. 2011. Assessing trout farm pollution by biological metrics and indices based on aquatic macrophytes and benthic macroinvertebrates: a case study. Ecol Indic 11: 911–917. [Google Scholar]
  • Carter JL, Resh VH, Rosenberg DM, Reynoldson TB. 2006. Biomonitoring in North American rivers: a comparison of methods used for benthic macroinvertebrates in Canada and the United States. In: Ziglio G, Flaim G, Sillgardi M, eds. Biological Monitoring of Rivers. New York: John Wiley & Sons Ltd., pp. 203–228. [CrossRef] [Google Scholar]
  • Choi J, Roche H, Caquet T. 1999. Characterization of superoxide dismutase activity in Chironomus riparius Mg. (Diptera, Chironomidae) larvae, a potential biomarker. Comp Biochem Physiol 124: 73–81. [Google Scholar]
  • Despotović SG, Perendija BR, Gavrić JP, Borković-Mitić SS, Paunović MM, Pavlović SZ, Saičić ZS. 2012. Seasonal changes in oxidative stress biomarkers of the snail Viviparus acerosus from the Velika Morava River, Serbia. Arch Biol Sci 64: 953–962. [CrossRef] [Google Scholar]
  • Dolédec S, Chessel D. 1994. Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31: 277–294. [Google Scholar]
  • Doucet-Beaupré H, Dubé C, Breton S, Pörtner HO, Blier PU. 2010. Thermal sensitivity of metabolic enzymes in subarctic and temperate freshwater mussels (Bivalvia: Unionoida). J Therm Biol 35: 11–20. [Google Scholar]
  • Duman F, Kar M. 2015. Evaluation of effects of exposure conditions on the biological responses of Gammarus pulex exposed to cadmium. Int J Environ Sci Technol 12: 437–444. [CrossRef] [Google Scholar]
  • Estevez E, Rodríguez-Castillo T, Álvarez-Cabria M, Penas FJ, González-Ferreras AM, Lezcano M, Barquín J. 2017. Analysis of structural and functional indicators for assessing the health state of mountain streams. Ecol Indic 72: 553–564. [Google Scholar]
  • Foy RH, Rosell R. 1991. Fractionation of phosphorus and nitrogen loadings from a Northern Ireland fish farm. Aquaculture 96: 31–42. [Google Scholar]
  • Gavrilović Lj, Dukić D. 2002. Reke Srbije. Zavod za udžbenike i nastavna sredstva, Beograd, 218 p. (in Serbian). [Google Scholar]
  • Gremyatchikh V, Tomilina II, Grebenyuk LP. 2009. The effect of mercury chloride on morphofunctional parameters in Chironomus riparius Meigen (Diptera, Chironomidae) larvae. Inland Water Biol 1: 89–95. [CrossRef] [Google Scholar]
  • Griffith OW. 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2 vinyl pyridine. Anal Biochem 106: 207–212. [CrossRef] [PubMed] [Google Scholar]
  • Halliwell B, Gutteridge JMC. 1999. Free radicals in biology and medicine. In: Halliwell B, Gutteridge JMC. eds., Free Radicals in Biology and Medicine, 3rd ed. Oxford: Oxford University Press, pp. 1–25. [Google Scholar]
  • Hook SE, Gallagher EP, Batley GE. 2014. The role of biomarkers in the assessment of aquatic ecosystem health. Integr Environ Assess Manag 10: 327–341. [CrossRef] [PubMed] [Google Scholar]
  • Imanpour N, Sharifinia M, Makrani AB. 2013. Assessment of fish farm effluents on macroinvertebrates based on biological indices in Tajan River (north Iran). Caspian J Env Sci 11: 29–39. [Google Scholar]
  • Iversen TM. 1995. Fish farming in Denmark: environmental impact of regulative legislation. Water Sci Technol 31: 73–84. [Google Scholar]
  • Kronvang B, Ertebjerg G, Grant R, Kristensen P, Hovmand M, Kirkegard J. 1993. Nation wide monitoring of nutrients and their ecological effects: state of the Danish aquatic environmental. Ambio 22: 176–187. [Google Scholar]
  • Kruidenier L, Verspaget HW. 2002. Review article: oxidative stress as a pathogenic factor in inflammatory bowel disease − radicals or ridiculous. Aliment Pharmacol Ther 16: 1997–2015. [Google Scholar]
  • Lemaire P, Livingstone DR. 1993. Pro-oxidant/antioxidant processes and organic interactions in marine organisms, in particular the flounder Platichthys flesus and the mussel Mytilus edulis. Trends Comp Biochem Physiol 1: 1119–1147. [Google Scholar]
  • Livingstone DR. 2001. Contaminant-stimulated reactive oxygen species nproduction and oxidative damage in aquatic organisms. Mar Pollut Bull 42: 656–666. [Google Scholar]
  • Livingstone DR. 2003. Oxidative stress in aquatic organisms in relation to pollution and aquaculture. Rev Med Vet Toulouse 154: 427–430. [Google Scholar]
  • Loch DD, West JL, Perlmutter DG. 1996. The effect of trout farm effluent on the taxa richness of benthic macroinvertebrates. Aquaculture 147: 37–55. [Google Scholar]
  • Lock K, Goethals PLM. 2011. Distribution and ecology of the mayflies (Ephemeroptera) of Flanders (Belgium). Int J Limnol 47: 159–165. [CrossRef] [Google Scholar]
  • Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101: 13–30. [CrossRef] [PubMed] [Google Scholar]
  • Mahmoud N, Dellali M, El Bour M, Aissa P, Mahmoudi E. 2010. The use of Fulvia fragilis (Mollusca: Cardiidae) in the biomonitoring of Bizerta lagoon: a multimarkers approach. Ecol Indic 10: 696–702. [Google Scholar]
  • Marković Z, Poleksć V, Živić I, Stanković M, Ćuk D, Spasić M, Dulić Z, Rašković B, Ćirić M, Bošković D, Vukojević D. 2009. Stanje ribarstva u Srbiji. In: Conference Proceedings VII International Conference “Water & Fish”, Faculty of Agriculture, University of Belgrade − Serbia, May, 27–29, 2009, Belgrade, Serbia, pp. 30–39 (in Serbian). [Google Scholar]
  • Mirčić D, Stojanović K, Živić I, Todorović D, Stojanović D, Dolićanin Z, Perić-Mataruga V. 2016. The troutfarm effect on Dinocras megacephala (Plecoptera: Perlidae) larvae: antioxidative defense. Environ Toxicol Chem 35: 1775–1782. [CrossRef] [PubMed] [Google Scholar]
  • Misra HP, Fridovich I. 1972. The role of superoxide anion in the antioxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247: 3170–3175. [PubMed] [Google Scholar]
  • Namin JI, Sharifinia M, Makrani AB. 2013. Assessment of fish farm effluents on macroinvertebrates based on biological indices in Tajan River (north Iran). Can J Earth Sci 11: 29–39. [Google Scholar]
  • Newman CM. 1995. Quantitative Methods in Aquatic Ecotoxicology, Advances in Trace Substances Research. Boca Raton, FL: Lewis Publishers, 448 p. [Google Scholar]
  • Nilsson AN. 1996. Aquatic Insects of North Europe: A Taxonomic Handbook. Volume 1: Ephemeroptera, Plecoptera, Heteroptera, Neuroptera, Megaloptera, Coleoptera, Trichoptera, Lepidoptera., Denmark: Apollo Books, 274 p. [Google Scholar]
  • Niyogi S, Biswas S, Sarker S, Datta AG. 2001. Antioxidant enzymes in brackish water oyster, Saccostrea cucullata as potential biomarkers of polyaromatic hydrocarbon pollution in Hooghly Estuary (India): seasonality and its consequences. Sci Total Environ 281: 237–246. [PubMed] [Google Scholar]
  • Pulatsu S, Rad F, Köksal G, Aydın F, Benli AK, Topçu A. 2004. The impact of rainbow trout farm effluents on water quality of Karasu stream, Turkey. Turk J Fish Aquat Sci 4: 9–15. [Google Scholar]
  • Radojević A, Mirčić D, Živić M, Perić-Mataruga V, Todorović D, Božanić M, Živić I. 2017. Antioksidativni status larvi Ecdyonurus venosus (Ephemeroptera: Heptagenidae): Uticaj pastrmskih ribnjaka. XI Simpozijum entomologa Srbije 2017, sa međunarodnim učešćem, Goč, 17–21 Septembar, Zbornih plenarnih referata i rezimea, pp. 88–89 (in Serbian). [Google Scholar]
  • Regoli F, Hummel H, Amirad-Triquet C, Larroux C, Sukhotin, A. 1998. Trace metals and variations of antioxidant enzymes in Arctic bivalve populations. Arch Environ Contam Toxicol 35: 594–601. [CrossRef] [PubMed] [Google Scholar]
  • Selong JH, Helfrich LA. 1998. Impacts of trout culture effluent on water quality and biotic communities in Virginia headwater streams. Prog Fish Cult 60: 247–262. [CrossRef] [Google Scholar]
  • Silva C, Mattioli M, Fabbri E, Yáñez E, Delvalls TA, Martín-Díaz ML. 2012. Benthic community structure and biomarker responses of the clam Scrobicularia plana in a shallow tidal creek affected by fish farm effluents (Rio San Pedro, SW Spain). Environ Int 47: 86–98. [CrossRef] [PubMed] [Google Scholar]
  • Soofiani NM, Hatami R, Hemami MR, Ebrahimi E. 2012. Effects of trout farm effluent on water quality and the macrobenthic invertebrate community of the Zayandeh-Roud River, Iran. N Am J Aquac 74: 132–141. [Google Scholar]
  • SRPS ISO/IEC 17025:2006. ISO/IEC 17025:2005. Available at [Google Scholar]
  • Tamura M, Oschino N, Chance B. 1982. Some characteristics of hydrogen and alkyl-hydroperoxides metaboliying systems in cardiac tissue. J Biochem 92: 1019–1031. [CrossRef] [PubMed] [Google Scholar]
  • Tello A, Corner RA, Telfer TC. 2010. How do land-based salmonid farms affect stream ecology? Environ Pollut 158: 1147–1158. [Google Scholar]
  • TEPCD 2006. The European Parliament and the Council Directive 2006/44/EC of 6 September 2006, on the quality of fresh waters needing protection or improvement in order to support fish life. Official Journal of the European Union, L 264/20. [Google Scholar]
  • Thioulouse J, Chessel D, Dolédec S, Olivier JM. 1997. ADE-4: a multivariate analysis and graphical display software. Stat Comput 7: 75–83. [Google Scholar]
  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64: 178–189. [CrossRef] [PubMed] [Google Scholar]
  • Viarengo A, Canesi L, Pertica M, Poli, G, Moore MN, Orunesu M. 1990. Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis. Comp Biochem Physiol C 97: 37–42. [Google Scholar]
  • Vranković J. 2016. Age-related changes in antioxidant and glutathione S-transferase enzyme activities in the Asian clam. Biochemistry 81: 339–349. [Google Scholar]
  • Vranković J., Slavić M. 2015. Biomarker responses in Corbicula fluminea to the presence of dioxin-like polychlorinated biphenyls and seasonal changes. Ecol Ind 48: 99–106. [CrossRef] [Google Scholar]
  • Vranković J, Labus-Blagojević S, Csanyi B, Makovinska J, Cvetković O, Gačić Z, Blagojević D, Paunović M. 2012. Antioxidant enzymes and GST activity in natural populations of Holandriana holandrii from the Bosna River. Turk J Biol 36: 477–485. [Google Scholar]
  • Vranković J, Živić M, Radojević A, Perić-Mataruga V, Todorović D, Marković Z, Živić I. 2018. Evaluation of oxidative stress biomarkers in the freshwater gammarid Gammarus dulensis exposed to trout farm outputs. Ecotoxicol Environ Saf 163: 84–95. [Google Scholar]
  • Weston DP, Phillips MJ, Kelly LA. 1996. Environmental impacts of salmonid culture. Dev Aquac Fish Sci 29: 919–967. [CrossRef] [Google Scholar]
  • Winkelmann C, Koop JHE. 2007. The management of metabolic energy storage during the life cycle of mayflies: a comparative Weld investigation of the collector-gatherer Ephemera danica and the scraper Rhithrogena semicolorata. J Comp Physiol B 177: 119–128. [CrossRef] [PubMed] [Google Scholar]
  • Woynarovich A, Hoitsy G, Moth-Poulsen T. 2011. Small-scale rainbow trout farming. FAO, 81 p. [Google Scholar]
  • Zelko IN, Mariani TJ, Folz RJ. 2002. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Rad Biol Med 33: 337–349. [CrossRef] [Google Scholar]
  • Živić I, Marković Z, Filipović-Rojka Z, Živić M. 2009a. Influence of a trout farm on water quality and macrozoobenthos communities of the receiving stream (Trešnjica River, Serbia). Int Rev Hydrobiol 94: 673–687. [Google Scholar]
  • Živić I, Marković Z, Živić M. 2009b. Influence of a trout farm on macrozoobenthos communities of the Trešnjica River, Serbia. Arch Biol Sci 61: 483–492. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.