Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 41
Number of page(s) 9
Published online 02 October 2018
  • Appenroth K-J., Teller S, Horn M. 1996. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol Plantarum 38: 95–106 . [CrossRef] [Google Scholar]
  • Arnaud C, Quiblier C, Yepremian C, Got P, Groleau A, Vincon-Leite B, Bernard C, Troussellier M. 2008. Collapse of a Planktothrix agardhii perennial bloom and microcystin dynamicas in response to reduced phosphate concentrations in a temperate lake. FEMS Microbiol Ecol 65: 61–73 . [CrossRef] [PubMed] [Google Scholar]
  • Barrios CAZ, Nandini S, Sarma SSS. 2015. Effect of crude extract of Dolichospermum planctonicum on the demography of Plationus platulus (Rotifera) and Ceriodaphnia cornuta (Cladocera). Ecotoxicology 24: 85–93 . [CrossRef] [PubMed] [Google Scholar]
  • Briand E, Gugger M, Francois JC, Bernard C, Humbert JF, Quiblier C. 2008. Temporal variations in the dynamics of potentially microcystin-producing strains in a bloom-forming Planktothrix agardhii. Appl Environ Microbiol 74: 3839–3848 . [CrossRef] [Google Scholar]
  • Chlipala GE, Mo S, Orjala J. 2011. Chemodiversity in freshwater and terrestrial cyanobacteria − a source for drug discovery. Curr Drug Targets 12: 1654–1673 . [CrossRef] [PubMed] [Google Scholar]
  • Czarnecki O, Henning M, Lippert I, Welker M. 2006. Identification of peptide metabolites of Microcystis (Cyanobacteria) that inhibit trypsin-like activity in planktonic herbivorous Daphnia (Cladocera). Environ Microbiol 8: 77–87 . [CrossRef] [PubMed] [Google Scholar]
  • Gkelis S, Lanaras T, Sivonen K. 2006. The presence of microcystins and other cyanobacterial bioactive peptides in aquatic fauna collected from Greek freshwaters. Aquatic Toxicol 78: 32–41 . [CrossRef] [Google Scholar]
  • Grabowska M, Kobos J, Toruńska-Sitarz A, Mazur‑Marzec H. 2014. Non‑ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch Microbiol 196: 697–707 . [CrossRef] [PubMed] [Google Scholar]
  • Halvsted CB, Rohrlack T, Andersen T, Skulberg O, Edvardsen B. 2007. Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. J Plankton Res 29: 471–482 . [CrossRef] [Google Scholar]
  • Harms H, Kurita KL, Pan L, Wahome PG, He H, Kinghorn AD, Carter GT, Linington RG. 2016. Discovery of anabaenopeptin 679 from freshwater algal bloom material: insights into the structure-activity relationship of anabaenopetin protease inhibitors. Bioorg Med Chem Lett 26: 4960–4965 . [CrossRef] [PubMed] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424 . [CrossRef] [Google Scholar]
  • Jones GJ, Orr PT. 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28: 871–876 . [CrossRef] [Google Scholar]
  • Kurmayer R, Deng L, Entfellner E. 2016. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54: 69–86 . [CrossRef] [PubMed] [Google Scholar]
  • Mathe C, Hamvas MM, Vasas G. 2013. Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar Drugs 11: 3689–3717 . [CrossRef] [Google Scholar]
  • Mazur-Marzec H, Kaczkowska MJ, Błaszczyk A, Akcaalan R, Spoof L, Meriluoto J. 2013. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 11: 1–19 . [CrossRef] [PubMed] [Google Scholar]
  • Mazur-Marzec H, Błaszczyk A, Felczykowska A, Wohlfeld N, Kobos J, Toruńska-Sitarz A, Devi P, Montalvao S, D'souza L, Tammela P, Mikosik A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G. 2015. Baltic cyanobacteria − a source of biologically active compounds. Eur J Phycol 50: 343–360 . [CrossRef] [Google Scholar]
  • Metcalf JS, Codd GA. 2012. Cyanotoxins. In: Whitton BA, ed. Ecology of Cyanobacteria II: Their Diversity in Space and Time. New York-London: Springer Science + Business Media B.V. . [Google Scholar]
  • Mitrovic SM, Allis O, Furey A, James KJ. 2005. Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Cladophora fracta. Ecotoxicol Envion Saf 61: 345–352 . [CrossRef] [Google Scholar]
  • Namikoshi M, Rinehart KL. 1996. Bioactive compounds produced by cyanobacteria. J Industr Microbiol 17: 373–384 . [CrossRef] [Google Scholar]
  • Nasri AB, Bouaïcha N, Fastner J. 2004. First report of a microcystin-containing bloom of the cyanobacteria Microcystis spp. in Lake Oubeira, Eastern Algeria. Arch Environ Con Tox 46: 197–202 . [Google Scholar]
  • O'Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacterial blooms: the potential roles in eutrophication and climate change. Harmful Algae 14: 313–334 . [CrossRef] [Google Scholar]
  • Pawlik-Skowrońska B, Pirszel J, Kornijów R. 2008. Spatial and temporal variation in microcystin concentrations during perennial bloom of Planktothrix agardhii in a hypertrophic lake. Ann Limnol-Int J Lim 44 (2): 63–68 . [CrossRef] [Google Scholar]
  • Pawlik-Skowrońska B, Kalinowska R, Skowroński T. 2013. Cyanotoxin diversity and food web bioaccumulation in a reservoir with decreasing phosphorus concentrations and perennial cyanobacterial blooms. Harmful Algae 28: 118–125 . [CrossRef] [Google Scholar]
  • Pearl HW. 2014. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4: 988–1012 . [CrossRef] [Google Scholar]
  • Pflugmacher S. 2004. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicol 70: 169–178 . [Google Scholar]
  • Pflugmacher S, Wiegand C, Beattie KA, Krause E, Steinberg CEW, Codd GA. 2001. Uptake, effects and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (Cav.) Trin. Ex Steud. Environ Toxicol Chem 20: 846–852 . [CrossRef] [PubMed] [Google Scholar]
  • Pietsch C, Wiegand C, Ame MV, Nicklisch A, Wunderlin D, Pflugmacher S. 2001. The effects of cyanobacterial crude extracts on different aquatic organisms: evidence for cyanobacterial toxin modulatins factors. Enviorn Toxicol 16: 535–542 . [CrossRef] [Google Scholar]
  • PN-ISO 10260, 2002. Water quality. Measurement of biochemical parameters. Spectrophotometric determination of chlorophyll-a, PWN, Warszawa (in Polish) . [Google Scholar]
  • Rohrlack T, Edvardsen B, Skulberg R, Halstvedt CB, Utkilen HC, Ptacnik R, Skulberg OM. 2008. Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form subpopulations with dissimilar ecological traits. Limnol Oceanogr 53: 1279–1293 . [CrossRef] [Google Scholar]
  • Rohrlack T, Skulberg R, Skulberg OM. 2009. Distribution of oligopeptides of the cyanobacterium Planktothrix and their persistence in selected lakes in Fennoscandia. J Phycol 45: 1259–1265 . [CrossRef] [PubMed] [Google Scholar]
  • Romanowska-Duda Z, Mankiewicz J, Tarczyńska M, Walter Z, Zalewski M. 2002. The effects of toxic cyanobacteria (blue-green algae) on water plants and animal cells. Pol J Environ Sci 11: 561–565 . [Google Scholar]
  • Rouhiainen L, Jokela J, Fewer DP, Urmann S, Sivonen K. 2010. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). Chem Biol 17: 265–273 . [CrossRef] [PubMed] [Google Scholar]
  • Saqrane S, Ghazali IE, Ouahid Y, Hassni ME, Hadrami IE, Bouarab L, del Campo FF, Oudra B, Vasconcelos V. 2007. Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxification and oxidative stress induction. Aquatic Toxicol 83: 284–294 . [CrossRef] [Google Scholar]
  • Shin HJ, Murakami M, Matsuda H, Yamaguchi K. 1997. Aeruginosins 205-A and −B, serine protease inhibitory glycopeptides from the cyanobacterium Oscillatoria aghardii (NIES-205). J Org Chem 62: 1810–1813 . [CrossRef] [Google Scholar]
  • Tarkowska-Kukuryk M, Mieczan T. 2017. Submerged macrophytes as bioindicators of environmental conditions in shallow lakes in eastern Poland. Ann Limnol-Int J Lim 53: 27–34 . [CrossRef] [Google Scholar]
  • Toporowska M, Pawlik-Skowrońska B, Kalinowska R. 2014. Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus spp. (Diptera: Chironomidae). Eur J Entomol 111: 83–90 . [CrossRef] [Google Scholar]
  • Weiss J, Liebert HP, Brune W. 2000. Influence of microcystin-RR on growth and photosynthetic capacity of the duckweed Lemna minor L. J Appl Bot 74: 100–105 . [Google Scholar]
  • Welker M, von Döhren H. 2006. Cyanobacterial peptides − nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30: 530–563 . [CrossRef] [PubMed] [Google Scholar]
  • Welker M, Christiansen G, von Döhren H. 2004. Diversity of coexisting Planktothrix (Cyanobacteria) chemotypes deduced by mass spectral analysis of microcystins and other oligopeptides. Arch Microbiol 182: 288–298 . [CrossRef] [PubMed] [Google Scholar]
  • Wiegand C, Pflugmacher S. 2005. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharm 203: 201–218 . [CrossRef] [Google Scholar]
  • Wiegand C, Peuthert A, Pflugmacher S, Carmeli S. 2002. Effects of microcin SF608 and microcystin-LR, two cyanobacterial compounds produced by Microcystis sp. on aquatic organisms. Environ Toxicol 17: 400–406 . [CrossRef] [PubMed] [Google Scholar]
  • Yepremian C, Gugger MF, Briand E, Catherine A, Berger C, Quiblier C, Bernard C. 2007. Microcystin ecotypes in a perennial Planktothrix aghardii bloom. Water Res 41: 4446–4456 . [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.