Open Access
Review
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 42
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2018030
Published online 24 October 2018
  • Adis J. 1983. Eco-entomological observations from the Amazon. IV. Occurrence and feeding habits of the aquatic caterpillar Palustra laboulbeni Bar, 1873 (Arctiidae: Lepidoptera) in the vicinity of Manaus, Brazil. Acta Amaz 13: 31–36. [CrossRef] [Google Scholar]
  • Agassiz DJ. 1996. Lepidoptera Pyralidae (China Mark) moths. In: Nillson A., ed. Aquatic Insects of North Europe. A Taxonomic Handbook. Vol. 1. Stenstrup: Apollo Books, 257–263 pp. [Google Scholar]
  • Agassiz D. 2012. The Acentropinae (Lepidoptera: Pyraloidea: Crambidae) of Africa. Zootaxa 3494: 1–73. [Google Scholar]
  • Agassiz D. 2014. A preliminary study of the genus Nymphicula Snellen from Australia, New Guinea and the south Pacific (Lepidoptera: Pyraloidea: Crambidae: Acentropinae). Zootaxa 3774: 401–429. [CrossRef] [PubMed] [Google Scholar]
  • Balmert A, Bohn HF, Ditsche-Kuru P, Barthlott W. 2011. Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces. J Morphol 272: 442–451. [CrossRef] [PubMed] [Google Scholar]
  • Barbier R, Chauvin G. 1974. The aquatic egg of Nymphula nymphaeata (Lepidoptera: Pyralidae). Cell Tissue Res. 149: 473–479. [CrossRef] [Google Scholar]
  • Batra SWT. 1977. Bionomics of the aquatic moth Acentropus niveus (Olivier), a potential biological control agent for euroasian watermilfoil and hydrilla. N Y Entomol Soc 85: 143–152. [Google Scholar]
  • Berg K. 1941. Contributions to biology of the aquatic moth Acentropus niveus (Oliv.). Vidensk Medd Dansk Naturh Foren Kbh 105: 59–139. [Google Scholar]
  • Berg CO. 1950. Biology of certain aquatic caterpillars (Pyralidae: Nymphula spp.) which feed on Potamogeton. Trans Am Microsc Soc 69: 254–266. [CrossRef] [Google Scholar]
  • Bombelli P, Howe CJ, Bertocchini F. 2017. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27: 292–293. [CrossRef] [Google Scholar]
  • Bownes A. 2010. Asian aquatic plant moth Parapoynx diminutalis, accidentally introduced earlier, contributes to control of an aquatic weed Hydrilla verticillata in South Africa. Afr J Aquat Sci 35: 307–311. [CrossRef] [Google Scholar]
  • Brambila J, Stocks I. 2010. The European Pepper Moth, Duponchelia fovealis Zeller (Lepidoptera: Crambidae), a Mediterranean Pest Moth Discovered in Central Florida. Florida Department of Agriculture and Consumer Services. [Google Scholar]
  • Brito R, De Prins J, De Prins W, Mielke OHH, Gonçalves GL, Moreira GRP. 2016. Extant diversity and estimated number of Gracillariidae (Lepidoptera) species yet to be discovered in the Neotropical region. Rev Bras Etomol 60: 275–283. [CrossRef] [Google Scholar]
  • Buckingham GR, Ross BM. 1981. Notes on the biology and host specificity of Acentria nivea (=Acentropus niveus). J Aquat Plant Manag 19: 32–36. [Google Scholar]
  • Carbonell JA, Abellan P, Arribas P, Elder JF, Millan A. 2011. The genus Aphelocheirus Westwood, 1833 (Hemiptera: Aphelocheiridae) in the Iberian Peninsula. Zootaxa 2771: 1–16. [Google Scholar]
  • Carter DJ, Hargreaves B. 1994. Field Guide to the Caterpillars of Britain and Europe. London: Harper Collins Publishers. [Google Scholar]
  • Center TD, Hill MP. 2002. Field efficacy and predicted host range of the pickerelweed borer, Bellura densa, a potential biological control agent of water hyacinth. BioControl 47: 231–243. [CrossRef] [Google Scholar]
  • Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26. [CrossRef] [Google Scholar]
  • Chen Q, Chen ZS, Gu XS, Ma L, Wang X, Huang GH. 2017a. The complete mitogenome of Parapoynx crisonalis (Walker, 1859) (Lepidoptera: Crambidae), with phylogenetic relationships amongst three Acentropinae larval forms. Aquat Insects 38: 79–91. [CrossRef] [Google Scholar]
  • Chen F, Chunsheng W, Xue D. 2010. A review of the genus Elophila Hubner, 1822 in China (Lepidoptera: Crambidae: Acentropinae). Aquat Insects 32: 35–60. [CrossRef] [Google Scholar]
  • Chen Q, Ni L, Xing W, Li M, Jian-Bin H, Guo–Hua H. 2017b. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS One 12: e0173380 [CrossRef] [PubMed] [Google Scholar]
  • Choi C, Bareiss C, Walenciak O, Gross EM. 2002. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. J Chem Ecol 28: 2245–2256. [CrossRef] [PubMed] [Google Scholar]
  • Davis DR, Landry JF. 2012. A review of the North American genus Epimartyria (Lepidoptera, Micropterigidae) with a discussion of the larval plastron. ZooKeys 183: 37-83. [Google Scholar]
  • Dijkstra KDB, Monaghan MT, Pauls SU. 2014. Freshwater biodiversity and aquatic insects diversification. Annu Rev Entomol 59: 143–163. [CrossRef] [PubMed] [Google Scholar]
  • Dorn NJ, Cronin G, Lodge DM. 2001. Feeding preferences and performance of an aquatic lepidopteran on macrophytes: plant hosts as food and habitat. Oecologia 128: 406–415. [CrossRef] [PubMed] [Google Scholar]
  • Englund RA, Polhemus DA. 2001. Evaluating the effects of introduced rainbow trout (Oncorhynchus mykiss) on native stream insects on Kauai Island, Hawaii. J Insect Conserv 5: 265–281. [CrossRef] [Google Scholar]
  • Erhard D, Pohnert G, Gross EM. 2007. Chemical defense in Elodea nuttalii reduces feeding and growth of aquatic herbivorous Lepidoptera. J Chem Ecol 33: 1646–1661. [CrossRef] [PubMed] [Google Scholar]
  • Farahpour-Haghani A, Hassanpour M, Alinia F, Nouri-Ganbalani G, Razmjou J, Agassiz D. 2017. Water ferns Azolla spp. (Azollaceae) a new host plants for the small China-mark moth, Cataclysta lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae). Nota Lepi 40: 1–13. [CrossRef] [Google Scholar]
  • Flynn MR, Bush JWM. 2008. Underwater breathing: the mechanics of plastron respiration. J Fluid Mech 608: 275–296. [CrossRef] [Google Scholar]
  • Grimaldi D, Engle MS. 2005. Evolution of the Insects. New York: Cambridge University Press. [Google Scholar]
  • Gross EM, Johnson RL, Hairston NG. 2001. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127: 105–114. [CrossRef] [PubMed] [Google Scholar]
  • Gross EM, Feldbaum C, Choi C. 2002. High abundance of herbivorous Lepidoptera larvae (Acentria ephemerella Denis and Schifermüller) on submersed macrophytes in Lake Constance (Germany). Arch Hydrobiol 155: 1–21. [CrossRef] [Google Scholar]
  • Grutters BMC, Gross EM, Bakker ES. 2016. Insect herbivory on native and exotic aquatic plants: phosphorus and nitrogen drive insect growth and nutrient release. Hydrobiologia 778: 209–220. [CrossRef] [Google Scholar]
  • Habeck DH. 1988. Neargyractis slossonalis (Lepidoptera: Pyralidae, Nymphulinae): larval description and biological notes. Fla Entomol 71: 588–592. [Google Scholar]
  • Habeck DH, Balciunas JK. 2005. Larvae of Nymphulinae (Lepidoptera: Pyralidae) associated with Hydrilla verticilata (Hydrocharitaceae) in North Queensland. Aust J Entomol 44: 354–363. [CrossRef] [Google Scholar]
  • Habeck DH, Cuda JP, Weeks ENI. 2017. Waterlily leafcutter, Elophila obliteralis (Walker) (Insecta: Lepidoptera: Crambidae: Acentropinae). Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. [Google Scholar]
  • Hannemann HJ. 1967. Lepidoptera. In: Illies J, ed. Limnofauna Europea. Stuttgart: Gustav Fischer Verlag. [Google Scholar]
  • Harms NE, Grodowitz MJ. 2009. Insect herbivores of aquatic and wetland plants in the United States: a checklist from literature. J Aquat Plant Manage 47: 73–96. [Google Scholar]
  • Irungbam JS, Chib MS, Wangdi K. 2016. Taxonomic review of the superfamily Pyraloidea in Bhutan (Lepidoptera). J Asia Pac Biodivers 9: 355–382. [CrossRef] [Google Scholar]
  • Jach MA, Balke M. 2008. Global diversity of water beetles (Coleoptera) in freshwater. Hydrobiologia 595: 419–442. [CrossRef] [Google Scholar]
  • Kokociński W. 1963. Remarks on biology of Acentropus niveus Oliv. (Lepidoptera, Pyralidae). Pol Pis Entomol 33: 233–242. [Google Scholar]
  • Kovac D, Jelínek J, Hashim R, Wiwatwitaya D. 2007. Transition from bamboo sap to water: aquatic habits in the sap beetle Amphicrossus japonicus (Coleoptera: Cucujoidea: Nitidulidae). Eur J Entomol 104: 635–638. [CrossRef] [Google Scholar]
  • Kovachev S, Stoichev S, Haindijeva V. 1999. The zoobenthos of several lakes along the Northern Bulgarian Black Sea Coast. Lauterbornia 35: 33–38. [Google Scholar]
  • Krampl F. 1980. Řád motyli − Lepidoptera. In: Rozkošný R, ed. Klíč Vodních Larev Hmyzu. Praha: Československá Akademie Věd., 221–225 pp. [Google Scholar]
  • Kristensen NP, Scoble MJ, Karsholt O. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668: 699–747. [Google Scholar]
  • Landry B, Roque-Albelo L. 2006. The Acentropinae and Musotiminae (Lepidoptera, Pyralidae) of the Galapagos Islands, Ecuador. Zootaxa 1354: 45–56. [Google Scholar]
  • Lange WH. 1956. A generic revision of the aquatic moths of North America: (Lepidoptera: Pyralidae, Nymphulinae). Wasmann J Biol 14: 59–144. [Google Scholar]
  • Lange WH. 1971. Aquatic Lepidoptera. In: Usinger RL, ed. Aquatic Insects of California with Keys to North American Genera and California Species. Berkeley, Los Angeles and London: University of California Press, 271–288 pp. [Google Scholar]
  • Lau TF, Gross EM, Meyer-Rochow VB. 2007. Sexual dimorphism and light/dark adaptation in the compound eyes of male and female Acentria ephemerella (Lepidoptera: Pyraloidea: Crambidae). Eur J Entomol 104: 459–470. [CrossRef] [Google Scholar]
  • Li N, Chen O, Zhu J, Wang X, Huang JB, Huang GH. 2017. Seasonal dynamics and spatial distribution patterns of Parapoynx crisonalis (Lepidoptera: Crambidae) on water chestnuts. PLoS One 12: e 0184149. [Google Scholar]
  • Litsinger JA, Chantarapraha N. 1995. Developmental biology and host range of Parapoynx fluctuosalis and P. diminutalis ricefield caseworms. Int J Trop Insect Sci 16: 1–11. [Google Scholar]
  • Liu QN, Chai XY, Bian DD, Zhou CL, Tang BP. 2016. The complete mitochondrial genome of Plodia interpunctella (Lepidoptera: Pyralidae) and comparisons with other Pyraloidea insects. Genome 59: 37–49. [CrossRef] [Google Scholar]
  • McGaha YJ. 1954. Contribution to the biology of some Lepidoptera which feed on certain aquatic flowering plants. Trans Am Microsc Soc 73: 167–177. [CrossRef] [Google Scholar]
  • Meneses AR, Bevilaqua MVO, Hamada N, Querino RB. 2013. The aquatic habit and host plants of Paracles klagesi (Rotschild) (Lepidoptera: Erebidae, Arctiinae) in Brazil. Rev Bras Entomol 57: 350–352. [CrossRef] [Google Scholar]
  • Messner B, Adis J. 1987. Die Plastronstrukturen der submers lebenden neotropischen Bärenraupe von Palustra laboulbeni Bar, 1873 (Lepidoptera: Arctiidae). Zool Jahrb Abt Anat Ontog Tiere 115: 531–538. [Google Scholar]
  • Mey W, Speidel W. 2008. Global diversity of butterflies (Lepidoptera) in freshwater. Hydrobiologia 595: 521–528. [CrossRef] [Google Scholar]
  • Mey W, Speidel W. 2010. Malicyella gen. nov. − a new moth genus in the family Crambidae (Lepidoptera, Pyraloidae) from South-East Asia. Denisia 29: 215–222. [Google Scholar]
  • Miler O, Gross EM, Straile D. 2014. Small-scale variation in sexual size dimorphism and sex ratio in the aquatic moth Acentria ephemerella Denis and Schiffermuller, 1775 (Lepidoptera: Crambidae). Aquat Insects 36: 187–199. [CrossRef] [Google Scholar]
  • Miller KB, Bergsten J. 2016. Diving beetles of the World. Systematics and Biology of the Dytiscidae. Baltimore: Johns Hopkins University Press. [Google Scholar]
  • Mitterboeck TF, Fu J, Adamowicz SJ. 2016. Rates and patterns of molecular evolution in freshwater versus terrestrial insects. Genome 59: 968–980. [CrossRef] [Google Scholar]
  • Müeller UG, Dearing MD. 1994. Predation and avoidance of tough leaves by aquatic larvae of the moth Parapoynx rugosalis (Lepidoptera: Pyralidae). Ecol Entomol 19: 155–158. [CrossRef] [Google Scholar]
  • Nowacki J. 1998. The Noctuids (Lepidoptera, Noctuidae) of Central Europe. Bratislava: Frantisek Slamka. [Google Scholar]
  • Pabis K. 2014. Life cycle, host plants and abundance of caterpillars of the aquatic moth Cataclysta lemnata (Lepidoptera: Crambidae) in the post-glacial lake in Central Poland. North-West J Zool 10: 441–444. [Google Scholar]
  • Park JS, Kim MJ, Kim SS, Kim I. 2014. Complete mitochondrial genome of an aquatic moth, Elophila interruptalis (Lepidoptera: Crambidae). Mitochondrial DNA 25: 275–277. [Google Scholar]
  • Pulin P, Khound JN. 2000. Biology of rice caseworm Nymphula depunctalis (Guenee). J Agric Sci Soc North-East India 13: 119–121. [Google Scholar]
  • Petit C, Le Ru B, Dupas S, Frerot B, Ahuya P, Kaiser-Arnauld LHM, Calatayud PA. 2015. Influence of dietary experience on the induction of preference of adult moths and larvae for a new olfactory cue. PLoS One 10: e 0136169. [Google Scholar]
  • Polhemus JT, Polhemus DA. 2008. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia 595: 379–391. [Google Scholar]
  • Pruffer J. 1957. Pełnoskrzydłe samice Acentropus niveus Oliv. pod Toruniem. Pol Pism Entomol 5: 23–29. [Google Scholar]
  • Regier JC, Mitter C, Solis MA, Hayden JE, Landry B, Nuss M, Simonsen TJ, Yen SH, Zwick A, Cummins MP. 2012. A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Syst Entomol 37: 635–656. [CrossRef] [Google Scholar]
  • Reichholf J. 1970. Untersuchungen zur Biologie des Wasserschmerlings Nymphula nymphaeata L. (Lepidoptera, Pyralidae). Int Rev Ges Hydrobiol 55: 687–728. [CrossRef] [Google Scholar]
  • Reichholf J. 1976. Die Feinstruktur der Cuticula hydrophiler und hydrophober Raupen des Wasserschmetterlings Nymphula nymphaeata (Lepidoptera: Pyralidae: Nymphulinae). Entomol German 2: 258–261. [Google Scholar]
  • Resh VH, Jamieson W. 1988. Parasitism of the aquatic moth Petrophila confusalis (Lepidoptera: Pyralidae) by the aquatic wasp Tanychella pilosa (Hymenoptera: Ichneumonidae). Entomol News 99: 185–188. [Google Scholar]
  • Roff DA. 1994. The evolution of flightlessness: is history important? Evol Ecol 8: 639–657. [CrossRef] [Google Scholar]
  • Rubinoff D. 2008. Phylogeography and ecology of an endemic radiation of Hawaiian aquatic case-bearing moths (Hyposmocoma: Cosmopterigidae). Philos Trans R Soc Lond B Biol Sci 363: 3459–3465. [CrossRef] [PubMed] [Google Scholar]
  • Russell JA, Funaro CF, Giraldo YM, Goldman-Huertas B, Suh D, Kronauer DJC, Moeau CS, Pierce NE. 2012. A veritable menagerie of heritable bacteria from ants, butterflies, and beyond: broad molecular surveys and a systematic review. PLoS One 7: e 51027. [CrossRef] [Google Scholar]
  • Schmitz P, Rubinoff D. 2011. The Hawaiian amphibious caterpillar guild: new species of Hyposmocoma (Lepidoptera: Cosmopterigidae) confirm distinct aquatic invasions and complex speciation patterns. Zool J Linn Soc 162: 15–42. [CrossRef] [Google Scholar]
  • Scholtens BG, Solis MA. 2015. Annotated check list of the Pyraloidea (Lepidoptera) of America North of Mexico. ZooKeys 535: 1–1136. [CrossRef] [Google Scholar]
  • Schwentner M, Combosch DJ, Nelson JP Giribet G. 2017. A phylogenomic solution to the origin of insects by resolving crustacean-hexapod relationships. Curr Biol 27: 1818–1824. [CrossRef] [PubMed] [Google Scholar]
  • Scoble MS. 1995. The Lepidoptera Form, Function and Diversity. New York: Oxford University Press. [Google Scholar]
  • Slamka F. 1997. Die Zunsleratigen (Pyraloidea) Mitteleuropas. Bratislava: Frantisek Slamka. [Google Scholar]
  • Smolders A, van der Velde G. 1996. Spilosoma lubricipeda (Lepidoptera: Arctiidae) feeding on the aquatic macrophyte Stratiotes aloides. Entomol Berichten Amsterdam 56: 33–34. [Google Scholar]
  • Solis MA. 2007. Phylogenetic studies and modern classification of the Pyraloidea (Lepidoptera). Revi Colomb Entomol 33: 1–9. [Google Scholar]
  • Solis MA, Harms NE, Phillips-Rodriguez E, Scheffer SJ, Lewis ML, Janzen DH, Hallwachs W, Metz MA. 2018. Aquatic larvae of two acentropines, Usingeriessa onyxalis (Hampson) and Oxyelophila callista (Forbes) (Lepidoptera: Crambidae). Proc Entomol Soc Wash 120: 180–195. [CrossRef] [Google Scholar]
  • Speidel W. 2002. Insecta: Lepidoptera: Crambidae: Acentropinae. In: Schwoerbel J, Zwick P, eds. Süßwasserfauna von Mitteleuropa. Heidelberg, Berlin: Spektrum, 87–148 pp. [Google Scholar]
  • Sterling P, Parsons M. 2012. Field Guide to the Micromoths of Great Britain and Ireland. Gillingham: British Wildlife Publishing. [Google Scholar]
  • Stoops CA, Adler PH, McCreadie JW. 1998. Ecology of aquatic Lepidoptera (Crambidae: Nymphulinae) in South Carolina, USA. Hydrobiologia 379: 33–40. [CrossRef] [Google Scholar]
  • Tuskes PM. 1977. Observations on the biology of Parargyractis confusalis, an aquatic pyralid (Lepidoptera: Pyralidae). Can Entomol 109: 695–699. [CrossRef] [Google Scholar]
  • Vallenduuk HJ, Cuppen MJ. 2004. The aquatic living caterpillars (Lepidoptera: Pyraloidea: Crambidae) of Central Europe. A key to the larvae and autecology. Lauterbornia 49: 1–17. [Google Scholar]
  • van der Heide T, Roijackers RMM, Peeters ETHM, van Nes EH. 2006. Experiments with duckweed-moth systems suggest that global warming may reduce rather than promote herbivory. Freshwater Biol 51: 110–116. [CrossRef] [Google Scholar]
  • van der Velde G. 1988. Cataclysta lemnata L. (Lepidoptera, Pyralidae) can survive for several years consuming macrophytes other than Lemnaceae. Aquat Bot 31: 183–189. [CrossRef] [Google Scholar]
  • van der Velde, G. 1991. Rupsen van Cataclysta lemnata (L.) (Lepidoptera, Pyralidae) kunnen PVC vijverfolie perforeren. Entomol Ber 51: 94–95. [Google Scholar]
  • Vermeij GJ, Dudley R. 2000. Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol J Linn Soc 70: 541–554. [CrossRef] [Google Scholar]
  • Walenciak O, Zwisler W, Gross EM. 2002. Influence of Myriophyllum spicatum-derived tannins on gut microbiota of its herbivore Acentria ephemerella. J Chem Ecol 28: 2045–2056. [CrossRef] [PubMed] [Google Scholar]
  • Ward JW. 1992. Aquatic Insect Ecology. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley and Sons, Inc. [Google Scholar]
  • Welch PS. 1919. The aquatic adaptations of Pyrausta penitalis Grt. (Lepidoptera) and their respiratory significance. Ann Entomol Soc Am 12: 213–226. [CrossRef] [Google Scholar]
  • Welch PS, Sehon GL. 1928. The periodic vibratory movements of the larva of Nymphula maculalis Clemens (Lepidoptera) and their respiratory significance. Ann Entomol Soc Am 21: 243–258. [CrossRef] [Google Scholar]
  • Wheeler GS, Halpern MD. 1999. Compensatory responses of Samea multiplicalis larvae when fed leaves of different fertilization levels of the aquatic weed Pista stratioides. Entomol Exp Appl 92: 205–216. [CrossRef] [Google Scholar]
  • Wojtusiak H, Wojtusiak RJ. 1960. Biologia, występowanie i użytkowność motyli wodnych z podrodziny Hydrocampinae w stawach doświadczalnych PAN Ochaby. Pol Arch Hydrobiol 8: 253–260. [Google Scholar]
  • Ye F, You P. 2016. The complete mitochondrial genome of Paracymoriza distinctalis (Lepidoptera: Crambidae). Mitochondrial DNA Part A 27: 28–29. [CrossRef] [Google Scholar]
  • Yen SH, Solis MA, Goolsby JA. 2004. Austromusotima, a new Musotiminae genus (Lepidoptera: Crambidae) feeding on old world climbing fern, Lygodium microphyllum (Schizaeaceae). Ann Entomol Soc Am 97: 397–410. [Google Scholar]
  • Yoshida T, Nagasaki O, Hirayama T. 2011. A new species of the genus Apsilops Forster (Hymenoptera: Ichenumonidae: Cryptinae) from Japan; parasitoid of an aquatic crambid moth. Zootaxa 2916: 41–50. [Google Scholar]
  • Yoshiyasu, Y. 1980. A systematic study of the Genus Nymphicula Snellen from Japan (Lepidoptera: Pyralidae). Tyô to Ga 31: 1–28. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.