Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 419, 2018
Article Number 28
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2018017
Published online 13 June 2018
  • Agasild H, Nõges T. 2005. Cladoceran and rotifer grazing on bacteria and phytoplankton in two shallow eutrophic lakes: in situ measurement with fluorescent microspheres. J Plankton Res 27: 1155–1174. [CrossRef] [Google Scholar]
  • Angeler DG, Johnson RK. 2013. Algal invasions, blooms and biodiversity in lakes: accounting for habitat-specific responses. Harmful Algae 23: 60–69. [CrossRef] [Google Scholar]
  • APHA. 2001. Standard methods for the examination of water and wastewater. American Public Health Association, 21st ed. Washington, DC, USA: APHA-AWWA-WEF. [Google Scholar]
  • Arvola L, Salonen K, Kankaala P, Lehtovaara A. 1992. Vertical distributions of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia 229: 253–269. [CrossRef] [Google Scholar]
  • Berman T, Sherr BF, Sherr E, Wynne D, McCarthy JJ. 1984. The characteristics of ammonium and nitrate uptake by phytoplankton in Lake Kinneret. Limnol Oceanogr 29: 287–297. [CrossRef] [Google Scholar]
  • Björnerås C. 2014. Grazing resistance due to trichocysts may boost bloom formation in the HAB species Gonyostomum semen. MSc. Thesis, University of Lund, Lund. [Google Scholar]
  • Błędzki LA, Rybak JI. 2016. Freshwater crustacean zooplankton of Europe. Switzerland: Springer, pp. 1–918. [Google Scholar]
  • Brett MT, Kainz MJ, Taipale SJ, Seshan H. 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc Natl Acad Sci USA 106: 21197–21201. [CrossRef] [Google Scholar]
  • Cowles RP, Brambel CE. 1936. A study of the environmental conditions in a bog pond with special reference to the diurnal vertical distribution of Gonyostomum semen. Biol Bull 71: 286–298. [CrossRef] [Google Scholar]
  • Cronberg G, Lindmark G, Björk S. 1988. Mass development of the flagellate Gonyostomum semen (Raphidophyta) in Swedish forest lakes − an effect of acidification? Hydrobiologia 161: 217–236. [CrossRef] [Google Scholar]
  • Domingues RB, Barbosa AB, Sommer U., Galvão HM. 2011. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat Sci 73: 331–343. [CrossRef] [Google Scholar]
  • Drouet F, Cohen A. 1935. The morphology of Gonyostomum semen from Woods Hole, Massachusetts. Biol Bull 68: 422–439. [CrossRef] [Google Scholar]
  • Druvietis I, Spriņģe G, Briede A, Kokorīte I., Parele E. 2010. A comparative assessment of the bog aquatic environment of the Ramsar site of Teiči Neture Reserve and North Vidzeme Biosphere Reserve, Latvia. In: Klavins M., ed. Mires and Peat. Riga: University of Latvia Press, pp. 19–40. [Google Scholar]
  • Ejsmont-Karabin J. 1998. Empirical equations for biomass calculation of planktonic rotifers. Pol Arch Hydrobiol 45: 513–522. [Google Scholar]
  • Eloranta P, Räike A. 1995. Light as a factor affecting the vertical distribution of Gonyostomum semen (Ehr.) Diesing (Raphidophyceae) in lakes. Aqua Fenn 25: 15–22. [Google Scholar]
  • Gladyshev MI, Temerova TA, Dubovskaya OP, Kolmakov VI, Ivanova EA. 1999. Selective grazing on Cryptomonas by Ceriodaphnia quadrangular fed a natural phytoplankton assemblage. Aquat Ecol 33: 347–353. [CrossRef] [Google Scholar]
  • Górniak A. 2006. Jeziora Wigierskiego Parku Narodowego. Aktualna jakość i trofia wód. Wyd. UwB, Białystok, pp. 1–176 [in Polish]. [Google Scholar]
  • Grabowska M, Górniak A. 2004. Letni fitoplankton wybranych sucharów Wigierskiego Parku Narodowego. In Fałtynowicz Z, Rant-Tanajewska M. eds. [Google Scholar]
  • Hansson LA. 2000. Synergistic effects of food web dynamics and induced behavioral responses in aquatic ecosystems. Ecology 81: 842–851. [CrossRef] [Google Scholar]
  • Havens KE. 1989. Seasonal succession in the plankton of a naturally acidic, highly humic lake in Northeastern Ohio, USA. J Plankton Res 11: 1321–1327. [CrossRef] [Google Scholar]
  • Heisler J, Glibert PM, Burkholder JM, et al. 2008. Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8: 3–13. [CrossRef] [PubMed] [Google Scholar]
  • Herndon J, Cochlan WP. 2007. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6: 260–270. [CrossRef] [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Hongve D, Løvstad Ø, Bjørndalen K. 1988. Gonyostomum semen − a new nuisance to bathers in Norwegian lakes. Verh Internat Verein Limnol 23: 430–434. [Google Scholar]
  • Hutorowicz A, Szeląg-Wasielewska E, Grabowska M, Owsianny PM, Pęczuła W, Luścińska M. 2006. The occurrence of Gonyostomum semen (Raphidophyceae) in Poland. Fragm Flor Geobot Pol 13: 399–407. [Google Scholar]
  • ISO 10260. 1992. Water quality − Measurement of biochemical parameters − Spectrometric determination of the chlorophyll-a concentration. Warszawa: PKN. [Google Scholar]
  • Johansson KSL, Vrede T, Lebret K, Johnson RK. 2013. Zooplankton feeding on the nuisance flagellate Gonyostomum semen. PLoS ONE 8: e62557. [CrossRef] [PubMed] [Google Scholar]
  • Johansson KS, Lührig K, Klaminder J, Rengefors K. 2016a. Development of a quantitative PCR method to explore the historical occurrence of a nuisance microalga under expansion. Harmful Algae 56: 67–76. [CrossRef] [Google Scholar]
  • Johansson KS, Trigal C, Vrede T, van Rijswijk P, Goedkoop W, Johnson RK. 2016b. Algal blooms increase heterotrophy at the base of boreal lake food webs − evidence from fatty acid biomarkers. Limnol Oceanogr 61: 1563–1573. [CrossRef] [Google Scholar]
  • Jones RI. 1988. Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 161: 75–87. [CrossRef] [Google Scholar]
  • Kamiyama T, Itakura S, Nagasaki K. 2000. Changes in microbial loop components: effects of a harmful algal bloom formation and its decay. Aquat Microb Ecol 21: 21–30. [CrossRef] [Google Scholar]
  • Karosiene J, Kasperovičiene J, Koreiviene J, Vitonyte I. 2014. Assessment of the vulnerability of Lithuanian lakes to expansion of Gonyostomum semen (Raphidophyceae). Limnologica 45: 7–15. [CrossRef] [Google Scholar]
  • Korneva LG. 2000. Ecological aspects of the mass development of Gonyostomum semen (Ehr.) Dies. (Raphidophyta). Algologia 10: 265–277. [Google Scholar]
  • Korneva LG. 2014. Invasions of alien species of planktonic microalgae into the fresh waters of Holarctic (Review). Russ J Biol Inv 5: 65–81. [CrossRef] [Google Scholar]
  • Laugaste R, Nõges P. 2005. Nuisance alga Gonyostomum semen: implications for its global expansion. In Ramachandra TV, Ahalya N, Murty CR., eds. Aquatic Ecosystems, Conservation, Restoration and Management. Bangalore: Capital Publishing Company, pp. 77–87. [Google Scholar]
  • Le Cohu R, Guitard J, Comoy N, Brabet J. 1989. Gonyostomum semen (Raphidophycées), nuisance potentielle des grands réservoirs français? L'exemple du lac de Pareloup. Arch Hydrobiol 117: 225–236. [Google Scholar]
  • Lebret K, Fernandez MF, Hagman CHC, Rengefors K, Hansson L-A. 2012. Grazing resistance allows bloom formation and may explain invasion success of Gonyostomum semen. Limnol Oceanogr 57: 727–734. [CrossRef] [Google Scholar]
  • Lebret K, Tesson S, Kritzberg E, Carmelo T, Rengefors, K 2015. Phylogeography of the freshwater raphidophyte Gonyostomum semen confirms a recent expansion in northern Europe by a single haplotype. J Phycol 51: 768–781. [CrossRef] [PubMed] [Google Scholar]
  • Lee S, Fuhrman JA. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microbiol 53: 1298–1303. [Google Scholar]
  • Lepistö L, Antikainen S, Kivinen J. 1994. The occurrence of Gonyostomum semen (Ehr.) Diesing in Finnish lakes. Hydrobiologia 273: 1–8. [CrossRef] [Google Scholar]
  • Lodge DM. 1993. Biological invasions: lessons for ecology. Trends Ecol Evol 8: 133–137. [CrossRef] [PubMed] [Google Scholar]
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27: 31–36. [CrossRef] [Google Scholar]
  • Neal C, Neal M, Wickham H. 2000. Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. Sci Total Environ 251/252: 513–542. [Google Scholar]
  • Negro AI, De Hoyos C, Vega JC. 2000. Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain). Hydrobiologia 424: 25–37. [CrossRef] [Google Scholar]
  • Patalas K. 1960. Stosunki termiczne i tlenowe oraz przezroczystość wody w 44 jeziorach okolic Węgorzewa. Rocz Nauk Roln Ser B 77: 105–222 [in Polish]. [Google Scholar]
  • Pęczuła W. 2013. Habitat factors accompanying the mass appearances of nuisance, invasive and alien algal species Gonyostomum semen (Ehr.) Diesing in humic lakes of Eastern Poland. Pol J Ecol 61: 535–543. [Google Scholar]
  • Pęczuła W, Poniewozik M, Szczurowska A. 2013. Gonyostomum semen (Ehr.) Diesing bloom formation in nine lakes of Polesie region (Cental-Eastern Poland). Ann Limnol Int J Lim 49: 301–308. [CrossRef] [Google Scholar]
  • Pęczuła W, Mencfel R, Kowalczyk-Pecka D. 2014. Among-lake variation in vertical distribution of invasive, bloom-forming algal species Gonyostomum semen (Raphidophyceae) in stratified humic lakes of eastern Poland. Int Rev Hydrobiol 99: 317–325. [CrossRef] [Google Scholar]
  • Pęczuła W, Toporowska M, Pawlik-Skowrońska B, Koreiviene J. 2017. An experimental study on the influence of the bloom-forming alga Gonyostomum semen (Raphidophyceae) on cladoceran species Daphnia magna. Knowl Manag Aquat Ecosyst 418: 15. https://doi.org/10.1051/kmae/2017006 [Google Scholar]
  • Pithart D, Pechar L, Mattsson G. 1997. Summer blooms of raphidophyte Gonyostomum semen and its diurnal vertical migration in a floodplain pool. Algol Stud/Arch Hydrobiol Suppl 85: 119–133. [Google Scholar]
  • Pociecha A, Solarz W, Najberek K, Wilk-Woźniak E 2016. Native, alien, cosmopolitan, or cryptogenic? A framework for clarifying the origin status of rotifers. Aquat Biol 24: 141–149. [CrossRef] [Google Scholar]
  • Porter KG, Feig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948. [CrossRef] [Google Scholar]
  • Rengefors K, Weyhenmeyer GA, Bloch I. 2012. Temperature as a driver for the expansion of the microalga Gonyostomum semen in Swedish lakes. Harmful Algae 18: 65–73. [CrossRef] [Google Scholar]
  • Reynolds CS. 2006. The ecology of phytoplankton. Cambridge University Press, Cambridge, pp. 1–535. [Google Scholar]
  • Reynolds CS, Huszar VL, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [CrossRef] [Google Scholar]
  • Rosén G. 1981. Phytoplankton indicators and their relations to certain chemical and physical factors. Limnologica 13: 2263–2290. [Google Scholar]
  • Salonen K, Rosenberg M. 2000. Advantages from diel vertical migration can explain the dominance of Gonyostomum semen (Raphidophyceae) in a small, steeply-stratified humic lake. J Plankton Res 22: 1841–1853. [CrossRef] [Google Scholar]
  • Salonen K, Jones RI, Arvola L. 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of lake phytoplankton. Freshwater Biol 14: 431–438. [CrossRef] [Google Scholar]
  • Sukenik A, Hadas O, Kaplan A, Quesada A. 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes − physiological, regional, and global driving forces. Front Microbiol 3: 86. [CrossRef] [PubMed] [Google Scholar]
  • Trigal C, Goedkoop W, Johnson RK. 2011. Changes in phytoplankton, benthic invertebrate and fish assemblages of boreal lakes following invasion by Gonyostomum semen. Freshwater Biol 56: 1937–1948. [CrossRef] [Google Scholar]
  • Van Boekel WHM, Hansen FC, Riegman R, Bak RPM. 1992. Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial foodweb. Mar Ecol Prog Ser 81: 269–276. [CrossRef] [Google Scholar]
  • Vollenweider RA. 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell, Oxford: Edinburgh, pp. 1–213. [Google Scholar]
  • Williamson CE, Sanders RW, Moeller RE, Stutzman PL. 1996. Utilization of subsurface food resources for zooplankton reproduction: implications for diel vertical migration theory. Limnol Oceanogr 41: 224–233. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.