Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 55
Number of page(s) 9
DOI https://doi.org/10.1051/kmae/2017048
Published online 22 November 2017
  • Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25: 4692–4693. [CrossRef] [PubMed] [Google Scholar]
  • Anderson JH, Faulds PL, Atlas WI, Quinn TP. 2013. Reproductive success of captively bred and naturally spawned Chinook salmon colonizing newly accessible habitat. Evol Appl 6: 165–179. [CrossRef] [PubMed] [Google Scholar]
  • Araguas RM, Roldán MI, García-Marín JL, Pla C. 2007. Management of gene diversity in the endemic killifish Aphanius iberus: revising operational conservation units. Ecol Freshw Fish 16: 257–266. [CrossRef] [Google Scholar]
  • Attard CRM, Möller LM, Sasaki M, et al. 2016. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv Biol 30: 1060–1069. [CrossRef] [PubMed] [Google Scholar]
  • Bernatchez L. 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379. [CrossRef] [PubMed] [Google Scholar]
  • Bernatchez L, Guyomard R, Bonhomme F. 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol 1: 161–173. [CrossRef] [PubMed] [Google Scholar]
  • Black AN, Snekser JL, Al-Shaer L, et al. 2016. A review of the Leon springs pupfish (Cyprinodon bovinus) long-term conservation strategy and response to habitat restoration. Aquat Conserv Mar Freshw Ecosyst 26: 410–416. [CrossRef] [Google Scholar]
  • Blouin MS, Parsons M, Lacaille V, Lotz S. 1996. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 5: 393–401. [CrossRef] [PubMed] [Google Scholar]
  • Cairney M, Taggart JB, Hoyheim B. 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol 9: 2175–2178. [CrossRef] [PubMed] [Google Scholar]
  • Carlsson J, Carlsson JEL. 2002. Micro-scale distribution of brown trout: an opportunity for kin selection? Ecol Freshw Fish 11: 234–239. [CrossRef] [Google Scholar]
  • Carlsson J, Nilsson J. 2000. Population genetic structure of brown trout (Salmo trutta L.) within a northern boreal forest stream. Hereditas 132: 173–181. [CrossRef] [PubMed] [Google Scholar]
  • Cortey M, Garcia-Marin J-L. 2002. Evidence for phylogeographically informative sequence variation in the mitochondrial control region of Atlantic brown trout. J Fish Biol 60: 1058–1063. [CrossRef] [Google Scholar]
  • Cortey M, Vera M, Pla C, Garcia-Marin J-L. 2009. Northern and Southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol J Linn Soc 97: 904–917. [CrossRef] [Google Scholar]
  • Dehaan PW, Ardren WR. 2005. Characterization of 20 highly variable tetranucleotide microsatellite loci for bull trout (Salvelinus confluentus) and cross-amplification in other Salvelinus species. Mol Ecol Notes 5: 582–585. [CrossRef] [Google Scholar]
  • Duftner N, Weiss S, Medgyesy N, Sturmbauer C. 2003. Enhanced phylogeographic information about Austrian brown trout populations derived from complete mitochondrial control region sequences. J Fish Biol 62: 427–435. [CrossRef] [Google Scholar]
  • Fraser DJ. 2008. How well can captive breeding programs conserve biodiversity? A review of salmonids. Evol Appl 1: 535–586. [CrossRef] [PubMed] [Google Scholar]
  • Fraser DJ, Bernatchez L. 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10: 2741–2752. [CrossRef] [PubMed] [Google Scholar]
  • Freyhof J, Brooks E. 2011. European red list of freshwater fishes. Luxembourg: Publications Office of the European Union. [Google Scholar]
  • Fruciano C, Pappalardo AM, Tigano C, Ferrito V. 2014. Phylogeographical relationships of Sicilian brown trout and the effects of genetic introgression on morphospace occupation. Biol J Linn Soc 112: 387–398. [CrossRef] [Google Scholar]
  • George AL, Kuhajda BR, Williams JD, Cantrell MA, Rakes PL, Shute JR. 2009. Guidelines for propagation and translocation for freshwater fish conservation. Fisheries 34: 529–545. [CrossRef] [Google Scholar]
  • Goudet J. 2013. Hierfstat: estimation and tests of hierarchical F-statistics. https://CRAN.R-project.org/package=hierfstat [Google Scholar]
  • Hansen MM, Jensen LF. 2005. Sibship within samples of brown trout (Salmo trutta) and implications for supportive breeding. Conserv Genet 6: 297–305. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hundt M, Scharbert A, Weibel U, et al. 2015. First evidence of natural reproduction of the Allis shad Alosa alosa in the River Rhine following re-introduction measures. J Fish Biol 87: 487–493. [CrossRef] [PubMed] [Google Scholar]
  • Jombart T. 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403–1405. [CrossRef] [PubMed] [Google Scholar]
  • King TL, Eackles MS, Letcher BH. 2005. Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Mol Ecol Notes 5: 130–132. [CrossRef] [Google Scholar]
  • Kohout J, Jaskova I, Papousek I, Sediva A, Slechta V. 2012. Effects of stocking on the genetic structure of brown trout, Salmo trutta, in Central Europe inferred from mitochondrial and nuclear DNA markers. Fish Manag Ecol 19: 252–263. [CrossRef] [Google Scholar]
  • Kraemer P, Gerlach G. 2017. Demerelate: functions to calculate relatedness on diploid genetic data. https://CRAN.R-project.org/package=Demerelate [Google Scholar]
  • Laikre L (ed.). 1999. Conservation genetic management of brown trout (Salmo trutta) in Europe. (“TOUTCONCERT”, EU FAIR CT-97-3882) [Google Scholar]
  • Lehtonen PK, Tonteri A, Sendek D, Titov S, Primmer CR. 2009. Spatio-temporal genetic structuring of brown trout (Salmo trutta L.) populations within the River Luga, northwest Russia. Conserv Genet 10: 281–289. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lerceteau-Kohler E, Schliewen U, Kopun T, Weiss S. 2013. Genetic variation in brown trout Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the phylogeographic paradigm? BMC Evol Biol 13: 176. [CrossRef] [PubMed] [Google Scholar]
  • Luck GW, Daily GC, Ehrlich PR. 2003. Population diversity and ecosystem services. Trends Ecol Evol 18: 331–336. [CrossRef] [EDP Sciences] [Google Scholar]
  • McKeown NJ, Hynes RA, Duguid RA, Ferguson A, Prodoehl PA. 2010. Phylogeographic structure of brown trout Salmo trutta in Britain and Ireland: glacial refugia, postglacial colonization and origins of sympatric populations. J Fish Biol 76: 319–347. [CrossRef] [PubMed] [Google Scholar]
  • Meier K, Hansen MM, Bekkevold D, Skaala O, Mensberg K-LD. 2011. An assessment of the spatial scale of local adaptation in brown trout (Salmo trutta L.): footprints of selection at microsatellite DNA loci. Heredity 106: 488–499. [CrossRef] [PubMed] [Google Scholar]
  • Naish KA, Seamons TR, Dauer MB, Hauser L, Quinn TP. 2013. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol Ecol 22: 1295–1309. [CrossRef] [PubMed] [Google Scholar]
  • Nei M, Tajima F. 1981. DNA polymorphism detectable by restriction endonucleases. Genetics 97: 145–163. [PubMed] [Google Scholar]
  • Nilsson J, Östergren J, Lundqvist H, Carlsson U. 2008. Genetic assessment of Atlantic salmon Salmo salar and sea trout Salmo trutta stocking in a Baltic Sea river. J Fish Biol 73: 1201–1215. [CrossRef] [Google Scholar]
  • Nunney L, Campbell KA. 1993. Assessing minimum viable population size: demography meets population genetics. Trends Ecol Evol 8: 234–239. [CrossRef] [PubMed] [Google Scholar]
  • OReilly PT, Hamilton LC, McConnell SK, Wright JM. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53: 2292–2298. [Google Scholar]
  • Östergren J, Nilsson J, Lundqvist H, Dannewitz J, Palm S. 2015. Genetic baseline for conservation and management of sea trout in the northern Baltic Sea. Conserv Genet 17: 177–191. [CrossRef] [Google Scholar]
  • Palmé A, Laikre L, Ryman N. 2013. Monitoring reveals two genetically distinct brown trout populations remaining in stable sympatry over 20 years in tiny mountain lakes. Conserv Genet 14: 795–808. [CrossRef] [Google Scholar]
  • Palsbøll PJ, Bérubé M, Allendorf FW. 2007. Identification of management units using population genetic data. Trends Ecol Evol 22: 11–16. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Palti Y, Fincham MR, Rexroad CE. 2002. Characterization of 38 polymorphic microsatellite markers for rainbow trout (Oncorhynchus mykiss). Mol Ecol Notes 2: 449–452. [CrossRef] [Google Scholar]
  • Presa P, Guyomard R. 1996. Conservation of microsatellites in three species of salmonids. J Fish Biol 49: 1326–1329. [Google Scholar]
  • Pujolar JM, Vincenzi S, Zane L, Crivelli AJ. 2016. Temporal changes in allele frequencies in a small marble trout Salmo marmoratus population threatened by extreme flood events. J Fish Biol 88: 1175–1190. [CrossRef] [PubMed] [Google Scholar]
  • Ruzzante DE, Hansen MM, Meldrup D. 2001. Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure. Mol Ecol 10: 2107–2128. [CrossRef] [PubMed] [Google Scholar]
  • Ryman N, Palm S, André C, et al. 2006. Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 15: 2031–2045. [CrossRef] [PubMed] [Google Scholar]
  • Samuiloviene A, Kontautas A, Gross R. 2009. Genetic diversity and differentiation of sea trout (Salmo trutta) populations in Lithuanian rivers assessed by microsatellite DNA variation. Fish Physiol Biochem 35: 649–659. [CrossRef] [PubMed] [Google Scholar]
  • Saura M, Faria R. 2011. Genetic tools for restoration of fish populations. J Appl Ichthyol 27: 5–15. [CrossRef] [EDP Sciences] [Google Scholar]
  • Schenekar T, Lerceteau-Köhler E, Weiss S. 2014. Fine-scale phylogeographic contact zone in Austrian brown trout Salmo trutta reveals multiple waves of post-glacial colonization and a pre-dominance of natural versus anthropogenic admixture. Conserv Genet 15: 561–572. [CrossRef] [Google Scholar]
  • Selkoe KA, Toonen RJ. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9: 615–629. [CrossRef] [PubMed] [Google Scholar]
  • Slettan A, Plsaker I, Lie O. 1995. Atlantic Salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim Genet 26: 281–282. [CrossRef] [PubMed] [Google Scholar]
  • Suarez J, Bautista JM, Almodovar A, Machordom A. 2001. Evolution of the mitochondrial control region in Palaearctic brown trout (Salmo trutta) populations: the biogeographical role of the Iberian Peninsula. Heredity 87: 198–206. [CrossRef] [PubMed] [Google Scholar]
  • Susnik S, Schoffmann J, Weiss S. 2005. Genetic verification of native brown trout from the Persian Gulf (Catak Cay River, Tigris basin). J Fish Biol 67: 879–884. [CrossRef] [Google Scholar]
  • R Core Team. 2013. R: a language and environment for statistical computing. https://www.R-project.org/ [Google Scholar]
  • Van Houdt JKJ, Pinceel J, Flamand M-C, et al. 2005. Migration barriers protect indigenous brown trout (Salmo trutta) populations from introgression with stocked hatchery fish. Conserv Genet 6: 175–191. [CrossRef] [Google Scholar]
  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [CrossRef] [Google Scholar]
  • Vilas R, Bouza C, Castro J, López A, Martínez P. 2010. Management units of brown trout from Galicia (NW: Spain) based on spatial genetic structure analysis. Conserv Genet 11: 897–906. [CrossRef] [Google Scholar]
  • Was A, Bernaś R. 2016. Long-term and seasonal genetic differentiation in wild and enhanced stocks of sea trout (Salmo trutta m. trutta L.) from the Vistula River, in the southern Baltic-Management implications. Fish Res 175: 57–65. [CrossRef] [Google Scholar]
  • Was A, Wenne R. 2002. Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the Southern Baltic at microsatellite loci. Aquaculture 204: 493–506. [CrossRef] [Google Scholar]
  • Weiss S, Schlotterer C, Waidbacher H, Jungwirth M. 2001. Haplotype (mtDNA) diversity of brown trout Salmo trutta in tributaries of the Austrian Danube: massive introgression of Atlantic basin fish − by man or nature? Mol Ecol 10: 1241–1246. [CrossRef] [PubMed] [Google Scholar]
  • Wetjen M, Cortey M, Vera M, Schmidt T, Schulz R, Garcia-Marin J-L. 2017. Occurrence of length polymorphism and heteroplasmy in brown trout. Gene Reports 6: 1–7. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.