Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 48
Number of page(s) 11
Published online 16 October 2017
  • Beaver JR, Casamatta DA, East TL, et al. 2013. Extreme weather events influence the phytoplankton community structure in a large lowland subtropical lake (Lake Okeechobee, Florida, USA), Hydrobiologia 709(1): 213–226. [CrossRef] [Google Scholar]
  • Blaženčić J. 1995. Floristic characteristics of the makrophytic vegetation in Lake Savsko near Belgrade (Serbia, Yugoslavia), Glasnik instituta za botaniku i botaničke baste Univerziteta u Beogradu 29: 167–173. [Google Scholar]
  • Bogatov VV, Fedorovskiy AS. 2016. Freshwater ecosystems of the southern region of the russian far east are undergoing extreme environmental change. Knowl Manag Aquat Ecosyst 417: 34. [CrossRef] [EDP Sciences] [Google Scholar]
  • Borics G, Tóthmérész B, Lukács BA, Várbíró G. 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems, Hydrobiologia 698(1): 251–262. [CrossRef] [Google Scholar]
  • Bresciani M, Rossini M, Morabito G, et al. 2013. Analysis of within- and between-day chlorophyll-a dynamics in Mantua Superior Lake, with a continuous spectroradiometric measurement, Mar Freshw Res 64: 303–316. [CrossRef] [Google Scholar]
  • Cellamare M, Lançon AM, Leitão M, Cerasino L, Obertegger U, Flaim G. 2016. Phytoplankton functional response to spatial and temporal differences in a cold and oligotrophic lake. Hydrobiologia 764 (1): 199–209. [CrossRef] [Google Scholar]
  • Devi MB, Gupta S, Das T. 2016. Phytoplankton community of Lake Baskandi anua, Cachar District, Assam, North East India − an ecological study. Knowl Manag Aquat Ecosyst 417: 2. [CrossRef] [EDP Sciences] [Google Scholar]
  • EN 15204:2008. Water quality − guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). Brussels: European Committee for Standardization. [Google Scholar]
  • Foundation for Environmental Education. 2014. The results of the Blue Flag International Jury [accessed on July 2014]. [Google Scholar]
  • Grabowska M, Górniak A, Krawczuk M. 2013. Summer phytoplankton in selected lakes of the East Suwałki Lakeland in relation to the chemical water parameters, Limnol Rev 13 (1): 21–29. [CrossRef] [Google Scholar]
  • Häggqvist K, Lindholm T. 2012. Phytoplankton dynamics in a shallow lake dominated by common water milfoil, Inland Waters 2 (3): 137–146. [CrossRef] [Google Scholar]
  • Hillebrand H, Durselen CDD, Kirschtel U, Pollingher T, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae, J Phycol 35: 403–424. [CrossRef] [Google Scholar]
  • Honti M, Istvánovics V, Osztoics A. 2007. Stability and change of phytoplankton communities in a highly dynamic environment − the case of large, shallow Lake Balaton (Hungary). Hydrobiologia 581: 225–240. [CrossRef] [Google Scholar]
  • ISO 10260:1992. Water quality: measurement of biochemical parameters − spectrometric determination of the chlorophyll a concentration. [Google Scholar]
  • Laskar HS, Gupta S. 2013. Phytoplankton community and limnology of Chatla floodplain wetland of Barak valley, Assam, North-East India. Knowl Manag Aquat Ecosyst 411: 06. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ma X, Wang Y, Feng S, Wang S. 2015. Vertical migration patterns of different phytoplankton species during a summer bloom in Dianchi Lake, China. Environ Earth Sci 74 (5): 3805–3814. [CrossRef] [Google Scholar]
  • Martinovic-Vitanovic VM, Milankov VM, Kalafatic VI. 2010. First record of freshwater bryozoans (Bryozoa: Phylactolaemata) in the aquatic invertebrate fauna of Serbia. Limnol-Ecol Manag Inland Waters 40 (1): 73–81. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mićković B, Nikčević M, Grozdić T, Pucar M, Hegediš A, Gačić Z. 2014. Ecological potential assessment of Sava Lake based on fish community composition: preliminary results. Water Res Manag 4 (3): 21–25. [Google Scholar]
  • Padisák J, Crossetti O, Naselli-Flores L. 2009. Use and misuse in the application of phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19. [CrossRef] [Google Scholar]
  • Petrović AM. 2015. Challenges of torrential flood risk management in Serbia. J Geogr Inst ‘Jovan Cvijic’ SASA 65 (2): 131. [CrossRef] [Google Scholar]
  • Ren Y, Pei H, Hu W, et al. 2014. Spatiotemporal distribution pattern of cyanobacteria community and its relationship with the environmental factors in Hongze Lake, China. Environ Monit Assess 186(10): 6919–6933. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds CS. 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography 3 (3): 141–159. [CrossRef] [Google Scholar]
  • Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S. 2002. Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24: 417–428. [Google Scholar]
  • Rhee GY, Gotham IJ. 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol Oceanogr 26 (4): 635–648. [CrossRef] [Google Scholar]
  • Rosen BH, St. Amand A. 2015. Field and laboratory guide to freshwater cyanobacteria harmful algal blooms for Native American and Alaska Native communities (no. 2015-1164). US Geological Survey, 44 p. [Google Scholar]
  • Serbian Regulation on the parameters of ecological and chemical status of surface waters and parameters of chemical status and quantitative status of ground waters. Official Gazette of the RS 74/2011. [Google Scholar]
  • Shannon CE, Weaver W. 1949. The mathematical theory of communication. Urbana: University of Illinois Press, 173 p. [EDP Sciences] [Google Scholar]
  • Sun J, Liu D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res 25: 1331–1346. [CrossRef] [Google Scholar]
  • Suthers MI, Rissik D. 2008. Plankton − a guide to their ecology and monitoring for water quality. Colllingwood, VIC, Australia: CSIRO Publishing. [Google Scholar]
  • The Republic Hydrometeorological Institute of Serbia. 2014. Annual Bulletin for Serbia, year 2013. Belgrade: Department for Climate Forecast, Information and Training, The Republic Hydrometeorological Service of Serbia. [Google Scholar]
  • The Republic Hydrometeorological Institute of Serbia. 2015. Annual Bulletin for Serbia, year 2014. Belgrade: Department for Climate Forecast, Information and Training, The Republic Hydrometeorological Service of Serbia. [Google Scholar]
  • Wood SA, Borges H, Puddick J, et al. 2017. Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change. Hydrobiologia 785 (1): 71–89. [CrossRef] [Google Scholar]
  • Yang Y, Pettersson K, Padisák J. 2016a. Repetitive baselines of phytoplankton succession in an unstably stratified temperate lake (Lake Erken, Sweden): a long-term analysis. Hydrobiologia 764 (1): 211–227. [CrossRef] [Google Scholar]
  • Yang Z, Zhang M, Shi X, Kong F, Ma R, Yu Y. 2016b. Nutrient reduction magnifies the impact of extreme weather on cyanobacterial bloom formation in large shallow Lake Taihu (China). Water Res 103: 302–310. [CrossRef] [PubMed] [Google Scholar]
  • Znachor P, Zapomělova E, Reháková K, Nedoma J, Šimek K. 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquat Sci 70 (1): 77–86. [CrossRef] [Google Scholar]
  • Zohary T, Padisák J, Naselli-Flores L. 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269. [CrossRef] [Google Scholar]
  • Žutinić P, Gligora-Udovič M, Kralj-Borojević K, Plenković-Moraj A, Padisák J. 2014. Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740: 147–166. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.