Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 47
Number of page(s) 11
Published online 01 November 2017
  • Arnekleiv JV. 1995. Bestemmelsesnøkkel til norske døgnfluelarver (Ephemeroptera larvae) [determination key to Norwegian ephemeroptera]. Stavanger: Norsk Entomologisk Forening, 47 p. (in Norwegian). [Google Scholar]
  • Benfield E. 1996. Leaf breakdown in stream ecosystems. Methods Stream Ecol 27: 579–589. [Google Scholar]
  • Biasi C, Tonin AM, Restello RM, Hepp LU. 2013. The colonisation of leaf litter by Chironomidae (Diptera): the influence of chemical quality and exposure duration in a subtropical stream. Limnologica 43: 427–433. [CrossRef] [Google Scholar]
  • Biggs BJ. 2000. Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. J N Am Benthol Soc 19: 17–31. [CrossRef] [Google Scholar]
  • Biggs B, Kilroy C. 2000. Stream periphyton monitoring manual. Christchurch, New Zealand: National Institute of Water and Atmospheric Research. [Google Scholar]
  • Biggs BJ, Goring DG, Nikora VI. 1998a. Subsidy and stress responses of stream periphyton to gradients in water velocity as a function of community growth form. J Phycol 34: 598–607. [CrossRef] [Google Scholar]
  • Biggs BJ, Stevenson RJ, Lowe RL. 1998b. A habitat matrix conceptual model for stream periphyton. Arch Hydrobiol 143: 21–56. [CrossRef] [Google Scholar]
  • Bonada N, Rieradevall M, Prat N. 2007. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589: 91–106. [CrossRef] [Google Scholar]
  • Bunn SE, Arthington AH. 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manag 30: 492–507. [Google Scholar]
  • Cañedo-Argüelles M, Bundschuh M, Gutiérrez-Cánovas C, et al. 2014. Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Sci Total Environ 476: 634–642. [CrossRef] [PubMed] [Google Scholar]
  • Cardinale BJ, Palmer MA, Collins SL. 2002. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415: 426–429. [CrossRef] [PubMed] [Google Scholar]
  • Ceola S, Hödl I, Adlboller M, et al. 2013. Hydrologic variability affects invertebrate grazing on phototrophic biofilms in stream microcosms. PLoS ONE 8: e 60629. [CrossRef] [Google Scholar]
  • Connell JH. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310. [CrossRef] [PubMed] [Google Scholar]
  • Dangles OJ, Guérold FA. 2000. Structural and functional responses of benthic macroinvertebrates to acid precipitation in two forested headwater streams (Vosges Mountains, northeastern France). Hydrobiologia 418: 25–31. [CrossRef] [Google Scholar]
  • Dumnicka E, Galas J, Koperski P. 2007. Benthic invertebrates in karst springs: does substratum or location define communities? Int Rev Hydrobiol 92: 452–464. [CrossRef] [Google Scholar]
  • Dynesius M, Nilsson С. 1994. Fragmentation and flow regulation of river systemin the northern 3rd of the world. Science 266: 753–762. [CrossRef] [PubMed] [Google Scholar]
  • Edington JM, Hildrew AG. 1995. A revised key to the caseless caddis larvae of the British Isles with notes on their ecology. Windermere: Freshwater Biol Assn, 134 p. [Google Scholar]
  • Elbrecht V, Beermann AJ, Goessler G, et al. 2016. Multiple‐stressor effects on stream invertebrates: a mesocosm experiment manipulating nutrients, fine sediment and flow velocity. Freshw Biol 61: 362–375. [CrossRef] [Google Scholar]
  • Fowler H, Kilsby C. 2007. Using regional climate model data to simulate historical and future river flows in northwest England. Clim Change 80: 337–367. [CrossRef] [Google Scholar]
  • Francoeur SN, Biggs BJ. 2006. Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Advances in algal biology: a Commemoration of the work of Rex Lowe. Springer, 59–69. [CrossRef] [Google Scholar]
  • Francoeur SN, Biggs BJ, Smith RA, Lowe RL. 1999. Nutrient limitation of algal biomass accrual in streams: seasonal patterns and a comparison of methods. J N Am Benthol Soc 18: 242–260. [CrossRef] [Google Scholar]
  • Gessner MO, Chauvet E. 2002. A case for using litter breakdown to assess functional stream integrity. Ecol Appl 12: 498–510. [CrossRef] [Google Scholar]
  • Gleick PH. 2003. Global freshwater resources: soft-path solutions for the 21st century. Science 302: 1524–1528. [CrossRef] [PubMed] [Google Scholar]
  • Graf WL. 2006. Downstream hydrologic and geomorphic effects of large dams on American rivers. Geomorphology 79: 336–360. [CrossRef] [Google Scholar]
  • Greenwood JL, Rosemond AD, Wallace JB, Cross WF, Weyers HS. 2007. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 151: 637–649. [CrossRef] [PubMed] [Google Scholar]
  • Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111: 1169–1194. [CrossRef] [Google Scholar]
  • Gucker B, Brauns M, Pusch MT. 2006. Effects of wastewater treatment plant discharge on ecosystem structure and function of lowland streams. J N Am Benthol Soc 25: 313–329. [Google Scholar]
  • Gutowski A, Förster J. 2009. Benthische Algen ohne Diatomeen und Characeen [benthic algae except diatoms and charophyceae). Recklinghausen: LANUV-Arbeitsblatt 9, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, 490 p. (in German). [Google Scholar]
  • Hogsden KL, Harding JS. 2012. Consequences of acid mine drainage for the structure and function of benthic stream communities: a review. Freshw Sci 31: 108–120. [CrossRef] [Google Scholar]
  • Hooper DU, Chapin F, Ewel J, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75: 3–35. [Google Scholar]
  • IPCC. 2013. Summary for policymakers. In Stocker TF, Qin D, Plattner GK, et al., eds. Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. [Google Scholar]
  • John DM, Whitton BA, Brook AJ, eds. 2011. The freshwater algal flora of the British Isles. London: Cambridge University Press, 702 p. [EDP Sciences] [Google Scholar]
  • Kahlert M, McKie BG. 2014. Comparing new and conventional methods to estimate benthic algal biomass and composition in freshwaters. Environ Sci: Process Imp 16: 2627–2634. [CrossRef] [Google Scholar]
  • Kelly MG, Whitton BA. 1998. Biological monitoring of eutrophication in rivers. Hydrobiologia 384: 55–67. [CrossRef] [Google Scholar]
  • Komarek J. 2013. Cyanoprokaryota. In Büdel G, Gärtner G, Krienitz L, Schagerl M, eds.Süßwasserflora von Mitteleuropa, Bd. 19/3. Heidelberg: Spektrum Verlag, 1138 p. [EDP Sciences] [Google Scholar]
  • Komarek J, Anagnostidis K. 2007. Cyanoprokaryota. In Büdel G, Gärtner G, Krienitz L, Schagerl M, eds.Süßwasserflora von Mitteleuropa, Bd. 19/1 and 19/2. Heidelberg: Spektrum Verlag, 1307 p. [EDP Sciences] [Google Scholar]
  • Kuznetsova A, Bruun Brockhoff P, Haubo Bojesen Christensen P. 2016. lmerTest: tests in linear mixed effects models. R package version 2: 0–33. [Google Scholar]
  • Lancaster J. 1999. Small‐scale movements of lotic macroinvertebrates with variations in flow. Freshw Biol 41: 605–619. [CrossRef] [Google Scholar]
  • Lange K, Townsend CR, Matthaei CD. 2014. Can biological traits of stream invertebrates help disentangle the effects of multiple stressors in an agricultural catchment? Freshw Biol 59: 2431–2446. [CrossRef] [Google Scholar]
  • Lecerf A, Usseglio-Polatera P, Charcosset JY, Lambrigot D, Bracht B, Chauvet E. 2006. Assessment of functional integrity of eutrophic streams using litter breakdown and benthic macroinvertebrates. Arch Hydrobiol 165: 105–126. [CrossRef] [Google Scholar]
  • Ledger M, Harris R, Armitage P, Milner A. 2009. Realism of model ecosystems: an evaluation of physicochemistry and macroinvertebrate assemblages in artificial streams. Hydrobiologia 617: 91–99. [CrossRef] [Google Scholar]
  • Ledger ME, Edwards FK, Brown LE, Milner AM, Woodward G. 2011. Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Global Change Biol 17: 2288–2297. [CrossRef] [Google Scholar]
  • Matthaei CD, Piggott JJ, Townsend CR. 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. J Appl Ecol 47: 639–649. [CrossRef] [Google Scholar]
  • Menendez M, de Rooy M, Broseliske G, Mol S. 2005. Key issues and research needs under the water framework directive − final document, comprising phase 1 and phase 2, December 2005, Issue date: 26/01/2006. Key Issues and Research Needs − Final Version December 2005. pdf. [Google Scholar]
  • Monk WA, Wood PJ, Hannah DM, Wilson DA. 2008. Macroinvertebrate community response to inter‐annual and regional river flow regime dynamics. River Res Appl 24: 988–1001. [CrossRef] [Google Scholar]
  • Naiman RJ, Latterell JJ, Pettit NE, Olden JD. 2008. Flow variability and the biophysical vitality of river systems. C R Geosci 340: 629–643. [CrossRef] [Google Scholar]
  • Nilsson A, ed. 1997. Aquatic insects of North Europe: a taxonomic handbook. Vester Skerninge: Apollo Books 440 p. [Google Scholar]
  • Oksanen J, Blanchet FG, Kindt R, et al. 2013. Package ‘vegan’. Community ecology package, version 2. [Google Scholar]
  • Oldmeadow DF, Lancaster J, Rice SP. 2010. Drift and settlement of stream insects in a complex hydraulic environment. Freshw Biol 55: 1020–1035. [CrossRef] [Google Scholar]
  • Ormerod S, Dobson M, Hildrew A, Townsend C. 2010. Multiple stressors in freshwater ecosystems. Freshw Biol 55: 1–4. [CrossRef] [Google Scholar]
  • Piggott JJ, Townsend CR, Matthaei CD. 2015. Reconceptualizing synergism and antagonism among multiple stressors. Ecol Evol 5: 1538–1547. [CrossRef] [PubMed] [Google Scholar]
  • Poff NL, Allan JD, Bain MB, et al. 1997. The natural flow regime. BioScience 47: 769–784. [Google Scholar]
  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Robinson CT, Gessner MO. 2000. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122: 258–263. [CrossRef] [PubMed] [Google Scholar]
  • Robinson CT, Aebischer S, Uehlinger U. 2004. Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. J N Am Benthol Soc 23: 853–867. [CrossRef] [Google Scholar]
  • Rolls RJ, Leigh C, Sheldon F. 2012. Mechanistic effects of low-flow hydrology on riverine ecosystems: ecological principles and consequences of alteration. Freshw Sci 31: 1163–1186. [Google Scholar]
  • Sand-Jensen K, Riis T, Vestergaard O, Larsen SE. 2000. Macrophyte decline in Danish lakes and streams over the past 100 years. J Ecol 88: 1030–1040. [CrossRef] [Google Scholar]
  • Schindler DW. 1998. Whole-ecosystem experiments: replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1: 323–334. [CrossRef] [Google Scholar]
  • Schneider SC. 2015. Greener rivers in a changing climate? Effects of climate and hydrological regime on benthic algal assemblages in pristine streams. Limnologica 55: 21–32. [CrossRef] [Google Scholar]
  • Schneider S, Lindstrøm EA. 2009. Bioindication in Norwegian rivers using non-diatomaceous benthic algae: the acidification index periphyton (AIP). Ecol Ind 9: 1206–1211. [CrossRef] [Google Scholar]
  • Schneider SC, Lindstrøm EA. 2011. The periphyton index of trophic status PIT: a new eutrophication metric based on non-diatomaceous benthic algae in Nordic rivers. Hydrobiologia 665: 143–155. [CrossRef] [Google Scholar]
  • Schneider S, Melzer A. 2003. The trophic index of Macrophytes (TIM): a new tool for indicating the trophic state of running waters. Int Rev Hydrobiol 88: 49–67. [CrossRef] [Google Scholar]
  • Schneider SC, Petrin Z. 2017. Effects of flow regime on benthic algae and macroinvertebrates: a comparison between regulated and unregulated rivers. Sci Total Environ 579: 1059–1072. [CrossRef] [PubMed] [Google Scholar]
  • Schneider SC, Hilt S, Vermaat JE, Kelly M. 2016. The “forgotten” ecology behind ecological status evaluation: re-assessing the roles of aquatic plants and benthic algae in ecosystem functioning. Progress in Botany, Vol. 78. Heidelberg: Springer, pp. 285–304. [Google Scholar]
  • Scrimgeour GJ, Davidson RJ, Davidson JM. 1988. Recovery of benthic macroinvertebrate and epilithic communities following a large flood, in an unstable, braided, New Zealand river. N Z J Mar Freshw Res 22: 337–344. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stendera S, Adrian R, Bonada N, et al. 2012. Drivers and stressors of freshwater biodiversity patterns across different ecosystems and scales: a review. Hydrobiologia 696: 1­–8. [CrossRef] [Google Scholar]
  • Townsend CR, Uhlmann SS, Matthaei CD. 2008. Individual and combined responses of stream ecosystems to multiple stressors. J Appl Ecol 45: 1810–1819. [CrossRef] [Google Scholar]
  • Ulén B, Bechmann M, Fölster J, Jarvie H, Tunney H. 2007. Agriculture as a phosphorus source for eutrophication in the north‐west European countries, Norway, Sweden, United Kingdom and Ireland: a review. Soil Use Manag 23: 5–15. [CrossRef] [Google Scholar]
  • Villeneuve A, Montuelle B, Bouchez A. 2011. Effects of flow regime and pesticides on periphytic communities: evolution and role of biodiversity. Aquat Toxicol 102: 123–133. [CrossRef] [PubMed] [Google Scholar]
  • Wallace ID, Wallace B, Philipson GN. 1990. A key to the case-bearing caddis larvae of Britain and Ireland (No. 51). Ambleside: Freshwater Biol Assn, 259 p. [Google Scholar]
  • Webster JR, Benfield EF. 1986. Vascular plant breakdown in fresh-water ecosystems. Annu Rev Ecol Syst 17: 567–594. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.