Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 49
Number of page(s) 14
Published online 25 October 2017
  • Allen B, Kon M, Bar‐Yam Y. 2009. A new phylogenetic diversity measure generalizing the Shannon index and its application to phyllostomid bats. Am Nat 174: 236–243. [CrossRef] [PubMed] [Google Scholar]
  • Apakupakul K, Siddall ME, Burreson EM. 1999. Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Mol Phylogenet Evol 12: 350–359. [CrossRef] [PubMed] [Google Scholar]
  • Armitage PD, Moss D, Wright JT, Furse MT. 1983. The performance of the new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running water sites. Water Res 17: 333–347. [CrossRef] [Google Scholar]
  • Bailey RC, Norris RH, Reynoldson TB. 2004. Bioassessment of freshwater ecosystems. US: Springer. [CrossRef] [Google Scholar]
  • Barbour MT, Gerritsen J, Griffith GE, et al. 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J N Am Benthol Soc 15: 185–211. [CrossRef] [Google Scholar]
  • Bielecki A. 1997. Fish leeches of Poland in relation to the Palaearctic piscicolines [Hirudinea: Piscicolidae: Piscicolinae]. Genus 8. [Google Scholar]
  • Bielecki A, Cichocka JM, Jeleń I, Świątek P, Adamiak-Brud Ż. 2011. A checklist of leech species from Poland. Wiad Parazytol 57: 11–20. [PubMed] [Google Scholar]
  • Bini LM, Landeiro VL, Padial AA, Siqueira T, Heino J. 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95: 1569–1578. [CrossRef] [PubMed] [Google Scholar]
  • Bis B, Usseglio-Polatera P. 2004. Species traits analysis. STAR deliverable N2 to the European Commission, 148 p. [Google Scholar]
  • Bis B, Mikulec A. 2013. Przewodnik do oceny stanu ekologicznego rzek na podstawie makrobezkręgowców bentosowych. Warszawa: Biblioteka Monitoringu Środowiska. Inspekcja Ochrony Środowiska (in Polish). [Google Scholar]
  • Błachuta J, Picińska-Fałtynowicz J, Czoch K, Kulesza K. 2010. Abiotyczne typy wód płynących w Polsce. Gospodarka Wodna 5: 181–191 (in Polish). [Google Scholar]
  • Botta-Dukát Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16: 533–540. [CrossRef] [Google Scholar]
  • Bournaud M, Cellot B, Richoux P, Berrahou A. 1996. Macroinvertebrate community structure and environmental characteristics along a large river: congruity of patterns for identification to species or family. J N Am Benthol Soc 15: 232–253. [CrossRef] [Google Scholar]
  • Carew ME, Miller AD, Hoffmann AA. 2011. Phylogenetic signals and ecotoxicological responses: potential implications for aquatic biomonitoring. Ecotoxicology 20: 595–606. [CrossRef] [PubMed] [Google Scholar]
  • Charvet S, Statzner B, Usseglio-Polatera P, Dumont B. 2000. Traits of benthic macroinvertebrates in semi-natural French streams: an initial application to biomonitoring in Europe. Freshw Biol 43: 1365–2427. [CrossRef] [Google Scholar]
  • Clarke KR, Warwick RM. 1998. A taxonomic distinctness index and its statistical properties. J Appl Ecol 35: 523–531. [CrossRef] [Google Scholar]
  • Collins SL, Barber SC. 1986. Effects of disturbance on diversity in mixed-grass prairie. Vegetatio 64: 87–94. [CrossRef] [Google Scholar]
  • Cortelezzi A, Sierra MV, Gómez N, Marinelli C, Capítulo AR. 2013. Macrophytes, epipelic biofilm, and invertebrates as biotic indicators of physical habitat degradation of lowland streams (Argentina). Environ Monit Assess 185: 5801–5815. [CrossRef] [PubMed] [Google Scholar]
  • Darling ES, Côté IM. 2008. Quantifying the evidence for ecological synergies. Ecol Lett 11: 1278–1286. [CrossRef] [PubMed] [Google Scholar]
  • Death RG, Winterbourn MJ. 1994. Environmental stability and community persistence: a multivariate perspective. J N Am Benthol Soc 13: 125–139. [CrossRef] [Google Scholar]
  • Death RG, Winterbourn MJ. 1995. Diversity patterns in stream benthic invertebrate communities: the influence of habitat stability. Ecology 76: 1446–1460. [CrossRef] [Google Scholar]
  • Directive. 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Water Framework Directive. http://eur-lexeuropaeu/LexUriServ/LexUriServdo?uri=CELEX:3.2000.L0060:en:HTML. [Google Scholar]
  • European Environment Agency. 2012. “Environmental Quality (definition)” Glossary Environmental Terminology and Discovery Service (accessed on: 2012/18/06). [Google Scholar]
  • Faith DP, Baker AM. 2006. Phylogenetic diversity (PD) and biodiversity conservation: some bioinformatics challenges. Evol Bioinform 2: 121–128. [Google Scholar]
  • Faith DP, Lozupone CA, Nipperess D, Knight R. 2009. The cladistic basis for the phylogenetic diversity (PD) measure links evolutionary features to environmental gradients and supports broad applications of microbial ecology's “phylogenetic beta diversity” framework. Int J Mol Sci 10: 4723–4741. [CrossRef] [PubMed] [Google Scholar]
  • Fore LS, Karr JR, Wisseman RW. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. J N Am Benthol Soc 15: 212–231. [CrossRef] [Google Scholar]
  • Fox JW. 2013. The intermediate disturbance hypothesis should be abandoned. Trends Ecol Evol 28: 86–92. [CrossRef] [PubMed] [Google Scholar]
  • Frissell CA, Liss WJ, Warren CE, Hurley MD. 1986. Hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ Manag 10: 199–214. [Google Scholar]
  • Furse M, Hering D, Moog O, et al. 2006. The STAR project: context objectives and approaches. Hydrobiologia 566: 3–29. [CrossRef] [Google Scholar]
  • Gallardo B, Gascón S, Quintana X, Comín FA. 2011. How to choose a biodiversity indicator − redundancy and complementarity of biodiversity metrics in a freshwater ecosystem. Ecol Indic 11: 1177–1184. [CrossRef] [Google Scholar]
  • Gayraud S, Statzner B, Bady P, et al. 2003. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshw Biol 48: 2045–2064. [CrossRef] [Google Scholar]
  • Geoportal. 2013. Head Office of Geodesy and Cartography. http://mapygeoportalgovpl/. [Google Scholar]
  • Göthe E, Wiberg-Larsen P, Kristensen EA, Baattrup-Pedersen A, Sandin L, Friberg N. 2015. Impacts of habitat degradation and stream spatial location on biodiversity in a disturbed riverine landscape. Biodivers Conserv 24: 1423–1441. [CrossRef] [Google Scholar]
  • Grosser C, Heidecke D, Moritz G. 2001. Untersuchungen zur Eignung heimischer Hirudineen als Bioindikatoren für Fließgewässer. Hercynia 34: 101–127. [Google Scholar]
  • Gutiérrez-Cánovas C, Millán A, Velasco J, Vaughan IP, Ormerod SJ. 2013. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Glob Ecol Biogeogr 22: 796–805. [Google Scholar]
  • Heino J, Muotka T, Paavola R. 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. J Anim Ecol 72: 425–434. [CrossRef] [Google Scholar]
  • Heino J, Mykrä H, Hamalainen H, Aroviita J, Muotka T. 2007. Responses of taxonomic distinctness and species diversity indices to anthropogenic impacts and natural environmental gradients in stream macroinvertebrates. Freshw Biol 52: 1846–1861. [CrossRef] [Google Scholar]
  • Hering D, Buffagni A, Moog O, et al. 2003. The development of a system to assess the ecological quality of streams based on macroinvertebrates − design of the sampling programme within the AQEM project. Int Rev Hydrobiol 88: 345–361. [CrossRef] [Google Scholar]
  • Hering D, Feld CK, Moog O, Ofenböck T. 2006a. Cook book for the development of a Multimetric Index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia 566: 311–324. [CrossRef] [Google Scholar]
  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PF. 2006b. Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric‐based analysis of organism response to stress. Freshw Biol 51: 1757–1785. [Google Scholar]
  • Huston M. 1979. A general hypothesis of species diversity. Am Nat 113: 81–101. [CrossRef] [Google Scholar]
  • Jackson MC, Loewen CJ, Vinebrooke RD, Chimimba CT. 2016. Net effects of multiple stressors in freshwater ecosystems: a meta‐analysis. Glob Change Biol 221: 180–189. [CrossRef] [Google Scholar]
  • Johnson RK, Angeler DG. 2014. Effects of agricultural land use on stream assemblages: taxon-specific responses of alpha and beta diversity. Ecol Indic 45: 386–393. [CrossRef] [Google Scholar]
  • Jones FC. 2008. Taxonomic sufficiency: the influence of taxonomic resolution on freshwater bioassessments using benthic macroinvertebrates. Environ Rev 16: 45–69. [CrossRef] [Google Scholar]
  • Jueg U, Grosser C, Bielecki A. 2004. Zur Kenntnis der Fischegelfauna Hirudinea: Piscicolidae in: Deutschland. Lauterbornia 52: 39–73. [Google Scholar]
  • Kaygorodova IA, Mandzyak NB. 2014. Molecular phylogeny of Siberian glossiphoniidae (Hirudinea). Mol Biol 48: 452–455. [CrossRef] [Google Scholar]
  • Kaygorodova IA, Mandzyak NB, Petryaeva E, Pronin NM. 2014. Genetic diversity of freshwater leeches in Lake Gusinoe (Eastern Siberia, Russia). Sci World J 2014: 1–11. [CrossRef] [Google Scholar]
  • Kazanci N, Ekingen P, Dügel M, Türkmen G. 2015. Hirudinea. Annelida. species and their ecological preferences in some running waters and lakes. Int J Environ Sci Technol 12: 1087–1096. [CrossRef] [Google Scholar]
  • Kondoh M. 2001. Unifying the relationships of species richness to productivity and disturbance. Proc R Soc Ser B: Biol Sci 268: 269–271. [CrossRef] [Google Scholar]
  • Koperski P. 2005. Testing the suitability of leeches (Hirudinea Clitellata) for biological assessment of lowland streams. Pol J Ecol 53: 6580. [Google Scholar]
  • Koperski P. 2006. Relative importance of factors determining diversity and composition of freshwater leech assemblages. Hirudinea Clitellata: a meta-analysis. Arch Hydrobiol 166: 325–341. [CrossRef] [Google Scholar]
  • Koperski P. 2010. Diversity of macrobenthos in lowland streams: ecological determinants and taxonomic specificity. J Limnol 69: 88–101. [CrossRef] [Google Scholar]
  • Koperski P. 2011. Diversity of freshwater macrobenthos and its use in biological assessment: a critical review of current applications. Environ Rev 19: 16–31 [CrossRef] [Google Scholar]
  • Koperski P, Meronka R. 2017. Environmental quality of a stream can be better predicted by phylogenetic than by taxonomic diversity. Knowl Manag Aquat Ecosyst 418: 16. [CrossRef] [EDP Sciences] [Google Scholar]
  • Kownacki A, Soszka H. 2004. Wytyczne do oceny stanu rzek na podstawie makrobezkręgowców oraz do pobierania prób makrobezkręgowców w jeziorach. Warszawa: Zakład Ochrony Przyrody PAN (in Polish). [Google Scholar]
  • Kubová N, Schenková J, Horsák M. 2013. Environmental determinants of leech assemblage patterns in lotic and lenitic habitats. Limnologica 43: 516–524. [CrossRef] [Google Scholar]
  • Legendre P, Legendre LF. 2012. Numerical ecology, Vol. 24. Elsevier. [Google Scholar]
  • Lepš J, De Bello F, Lavorel S, Berman S. 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78: 481–501. [Google Scholar]
  • Lorenz A, Hering D, Feld CK, Rolauffs P. 2004. A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516: 107–127. [CrossRef] [Google Scholar]
  • Mackey RL, Currie DJ. 2001. The diversity-disturbance relationship: is it generally strong and peaked? Ecology 82: 3479–3492. [Google Scholar]
  • Magurran AE. 2013. Measuring biological diversity. Oxford: Wiley-Blackwell. [Google Scholar]
  • Marshall JC, Steward AL, Harch BD. 2006. Taxonomic resolution and quantification of freshwater macroinvertebrate samples from an Australian dryland river: the benefits and costs of using species abundance data. Hydrobiologia 572: 171–194. [CrossRef] [Google Scholar]
  • Mason NW, Mouillot D, Lee WG, Wilson JB. 2005. Functional richness functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112–118. [CrossRef] [Google Scholar]
  • Mouchet MA, Villéger S, Mason NW, Mouillot D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24: 867–876. [CrossRef] [Google Scholar]
  • Nesemann H, Neubert E. 1999. Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea. Süßwasserfauna von Mitteleuropea 6/2. Heidelberg, Wien: Spektrum Akademischer Verlag. [Google Scholar]
  • Oceguera-Figueroa A, Phillips AJ, Pacheco‐Chaves B, Reeves WK, Siddall ME. 2011. Phylogeny of macrophagous leeches Hirudinea (Clitellata) based on molecular data and evaluation of the barcoding locus. Zool Scr 40: 194–203. [Google Scholar]
  • Porter EE, Forschner BR, Blair RB. 2001. Woody vegetation and canopy fragmentation along a forest-to-urban gradient. Urban Ecosyst 5: 131–151. [CrossRef] [Google Scholar]
  • Reice SR. 1985. Experimental disturbance and the maintenance of species diversity in a stream community. Oecologia 67: 90–97. [CrossRef] [PubMed] [Google Scholar]
  • Roque FO, Guimarães EA, Ribeiro MC, Escarpinati SC, Suriano MT, Siqueira T. 2014. The taxonomic distinctness of macroinvertebrate communities of Atlantic Forest streams cannot be predicted by landscape and climate variables but traditional biodiversity indices can. Braz J Biol 74: 991–999. [CrossRef] [PubMed] [Google Scholar]
  • Rousset V, Pleijel F, Rouse GW, Erséus C, Siddall ME. 2007. A molecular phylogeny of annelids. Cladistics 23: 41–63. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rosenzweig ML. 1995. Species diversity in space and time. Cambridge: Cambridge University Press. [CrossRef] [Google Scholar]
  • Saito VS, Siqueira T, Fonseca-Gessner AA. 2015. Should phylogenetic and functional diversity metrics compose macroinvertebrate multimetric indices for stream biomonitoring? Hydrobiologia 745: 167–179. [CrossRef] [Google Scholar]
  • Sánchez-Montoya MM, Vidal-Abarca MR, Suárez ML. 2010. Comparing the sensitivity of diverse macroinvertebrate metrics to a multiple stressor gradient in Mediterranean streams and its influence on the assessment of ecological status. Ecol Indicat 10: 896–904. [CrossRef] [Google Scholar]
  • Schweiger O, Klotz S, Durka W, Kühn I. 2008. A comparative test of phylogenetic diversity indices. Oecologia 157: 485–495. [CrossRef] [PubMed] [Google Scholar]
  • Siddall ME, Burreson EM. 1998. Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome C oxidase subunit I. Mol Phylogenet Evol 9: 156–162. [CrossRef] [PubMed] [Google Scholar]
  • Siddall ME, Budinoff RB, Borda E. 2005. Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae. Invertebr Syst 19: 105–112. [Google Scholar]
  • Statzner B, Bady P, Dolédec S, Schöll F. 2005. Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of trait patterns in least impacted river reaches. Freshw Biol 50: 2136–2161. [CrossRef] [Google Scholar]
  • Stranko SA, Hilderbrand RH, Palmer MA. 2012. Comparing the fish and benthic macroinvertebrate diversity of restored urban streams to reference streams. Restor Ecol 20: 747–755. [CrossRef] [Google Scholar]
  • Svensson JR, Lindegarth M, Siccha M, et al. 2007. Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity. Ecology 88: 830–838. [CrossRef] [PubMed] [Google Scholar]
  • Svensson JR, Lindegarth M, Jonsson PR, Pavia H. 2012. Disturbance-diversity models: what do they really predict and how are they tested? Proc R Soc Ser B: Biol Sci 279: 2163–2170. [CrossRef] [Google Scholar]
  • Šiling R, Urbanič G. 2016. Do lake littoral benthic invertebrates respond differently to eutrophication hydromorphological alteration land use and fish stocking? Knowl Manag Aquat Ecosyst 417: 35. [Google Scholar]
  • Tonkin JD, Death RG, Collier KJ. 2013. Do productivity and disturbance interact to modulate macroinvertebrate diversity in streams? Hydrobiologia 701: 159–172. [CrossRef] [Google Scholar]
  • Townsend CR, Scarsbrook MR, Doledec S. 1997. The intermediate disturbance hypothesis refugia and biodiversity in streams. Limnol Oceanogr 42: 938–949. [CrossRef] [Google Scholar]
  • Usseglio-Polatera P, Bournaud M, Richoux P, Tachet H. 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshw Biol 43: 175–205. [CrossRef] [Google Scholar]
  • Utevsky S, Trontelj P. 2004. Phylogenetic relationships of fish leeches Hirudinea Piscicolidae based on mitochondrial DNA sequences and morphological data. Zool Scr 33: 375–385. [CrossRef] [Google Scholar]
  • Vamosi JC, Vamosi SM. 2007. Body size rarity and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Divers Distrib 13: 1–10. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ. 2011. Measuring phylogenetic biodiversity. In: Biological diversity: frontiers in measurement and assessment. Oxford: Oxford University Press. [Google Scholar]
  • Verdonschot PFM. 2006. Beyond masses and blooms: The indicative value of oligochaetes. Hydrobiologia 564: 127–142. [CrossRef] [Google Scholar]
  • Walsh CJ, Waller KA, Gehling J, Nally RM. 2007. Riverine invertebrate assemblages are degraded more by catchment urbanisation than by riparian deforestation. Freshw Biol 52: 574–587. [CrossRef] [Google Scholar]
  • Warwick RM, Clarke KR. 1995. New biodiversity measures reveal a decrease in taxonomic distinctness with increasing stress. Mar Ecol Prog Ser 129: 301–305. [CrossRef] [Google Scholar]
  • Webb CO. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156: 145–155. [CrossRef] [PubMed] [Google Scholar]
  • Wilkinson DM. 1999. The disturbing history of intermediate disturbance. Oikos 84: 145–147. [CrossRef] [Google Scholar]
  • Wright IA, Chessman BC, Fairweather PG, Benson LJ. 1995. Measuring the impact of sewage effluent on the macroinvertebrate community of an upland stream: the effect of different levels of taxonomic resolution and quantification. Aust Ecol 20: 142–149. [CrossRef] [Google Scholar]
  • Wright IA, Ryan MM. 2016. Impact of mining and industrial pollution on stream macroinvertebrates: importance of taxonomic resolution water geochemistry and EPT indices for impact detection. Hydrobiologia 772: 103–115. [CrossRef] [Google Scholar]
  • Wright JF, Armitage PD, Furse MT, Moss D. 1989. Prediction of invertebrate communities using stream measurements. Regul River 4: 147–155. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.