Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 27
Number of page(s) 9
DOI https://doi.org/10.1051/kmae/2017019
Published online 16 June 2017
  • Abell R, Thieme M, Revenga C, et al. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403–414. [Google Scholar]
  • Beck J, Böller M, Erhardt A, Schwanghart W. 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecol Inform 19: 10–15. [CrossRef] [Google Scholar]
  • Bianchi TS, Allison MA. 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc Natl Acad Sci USA 106: 8085–8092. [CrossRef] [Google Scholar]
  • Brinson MM, Malvárez AI. 2002. Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29: 115–133. [CrossRef] [Google Scholar]
  • Broennimann O, Guisan A. 2008. Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4: 585–589. [CrossRef] [PubMed] [Google Scholar]
  • Callen ST, Miller AJ. 2015. Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria montana) invasion. Divers Distrib 21: 853–863. [CrossRef] [Google Scholar]
  • Corlett RT, Westcott DA. 2013. Will plant movements keep up with climate change? Trends Ecol Evol 28: 482–488. [Google Scholar]
  • De Groot RS, Wilson MA, Boumans RM. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41: 393–408. [Google Scholar]
  • Donaldson JE, Hui C, Richardson DM, Robertson MP, Webber BL, Wilson JR. 2014. Invasion trajectory of alien trees: the role of introduction pathway and planting history. Glob Change Biol 20: 1527–1537. [CrossRef] [Google Scholar]
  • Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annu Rev Ecol Evol Syst 45: 547–572. [CrossRef] [Google Scholar]
  • Early R, Sax DF. 2014. Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23: 1356–1365. [CrossRef] [Google Scholar]
  • Fernández M, Hamilton H. 2015. Ecological niche transferability using invasive species as a case study. PLOS ONE 10: e0119891. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Grimaldo JT, Bini LM, Landeiro VL, et al. 2016. Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquat Bot 132: 49–61. [CrossRef] [Google Scholar]
  • Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29: 260–269. [CrossRef] [PubMed] [Google Scholar]
  • Hussner A. 2012. Alien aquatic plant species in European countries. Weed Res 52: 297–306. [CrossRef] [Google Scholar]
  • Kaufman SR, Kaufman W. 2013. Invasive plants: a guide to identification, impacts, and control of common North American species. US: Stackpole Books. [Google Scholar]
  • Kelly R, Leach K, Cameron A, Maggs CA, Reid N. 2014. Combining global climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20: 884–894. [CrossRef] [Google Scholar]
  • Kolanowska M. 2013. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae). PLoS ONE 8: e77352. [CrossRef] [Google Scholar]
  • Kueffer C, Daehler CC, Torres-Santana CW, et al. 2010. A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12: 145–161. [CrossRef] [Google Scholar]
  • Larson ER, Gallagher RV, Beaumont LJ, Olden JD. 2014. Generalized “avatar” niche shifts improve distribution models for invasive species. Divers Distrib 20: 1296–1306. [CrossRef] [Google Scholar]
  • Leppäkoski E, Gollasch S, Olenin S. 2013. Invasive aquatic species of Europe. Distribution, impacts and management. Germany: Springer Science & Business Media. [Google Scholar]
  • Lowe S, Browne M, Boudjelas S, De Poorter M. 2000. 100 of the world's worst invasive alien species: a selection from the global invasive species database. Auckland, New Zealand: Invasive Species Specialist Group. [Google Scholar]
  • Luque GM, Bellard C, Bertelsmeier C, et al. 2014. The 100th of the world's worst invasive alien species. Biol. Invasions 16: 981–985. [CrossRef] [Google Scholar]
  • Mainali KP, Warren DL, Dhileepan K, et al. 2015. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob Change Biol 21: 4464–4480. [CrossRef] [Google Scholar]
  • Medley KA. 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr 19: 122–133. [CrossRef] [Google Scholar]
  • Montecino V, Molina X, Kumar S, Castillo ML, Bustamante RO. 2014. Niche dynamics and potential geographic distribution of Didymosphenia geminata (Lyngbye) M. Schmidt, an invasive freshwater diatom in Southern Chile. Aquat Invasions 9: 507–519. [CrossRef] [Google Scholar]
  • Natalie GK, Myla FJA. 2015. Invasion risk in a warmer world: modeling range expansion and habitat preferences of three nonnative aquatic invasive plants. Invasive Plant Sci Manag 8: 436–449. [CrossRef] [Google Scholar]
  • Nunes AL, Tricarico E, Panov VE, Cardoso AC, Katsanevakis S. 2015. Pathways and gateways of freshwater invasions in Europe. Aquat Invasions 10: 359–370. [CrossRef] [Google Scholar]
  • Oke OA, Thompson KA. 2015. Distribution models for mountain plant species: the value of elevation. Ecol Model 301: 72–77. [CrossRef] [Google Scholar]
  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 1344–1348. [CrossRef] [PubMed] [Google Scholar]
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259. [CrossRef] [Google Scholar]
  • Riis T, Olesen B, Clayton JS, Lambertini C, Brix H, Sorrell BK. 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat Bot 102: 56–64. [CrossRef] [Google Scholar]
  • Rödder D, Engler JO. 2011. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob Ecol Biogeogr 20: 915–927. [CrossRef] [Google Scholar]
  • Svirčev ZB, Tokodi N, Drobac D, Codd GA. 2014. Cyanobacteria in aquatic ecosystems in Serbia: effects on water quality, human health and biodiversity. Syst Biodivers 12: 261–270. [CrossRef] [Google Scholar]
  • Töpel M, Antonelli A, Yesson C, Eriksen B. 2012. Past climate change and plant evolution in western North America: a case study in Rosaceae. PLoS ONE 7: e50358. [CrossRef] [PubMed] [Google Scholar]
  • Václavík T, Kupfer JA, Meentemeyer RK. 2012. Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). J Biogeogr 39: 42–55. [CrossRef] [Google Scholar]
  • Varela S, Anderson RP, García-Valdés R, Fernández-González F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37: 1084–1091. [Google Scholar]
  • Wan J, Wang C, Tan J, Yu F. 2017. Climatic niche divergence and habitat suitability of eight alien invasive weeds in china under climate change. Ecol Evol 7: 1541–1552. [CrossRef] [PubMed] [Google Scholar]
  • Warfe DM, Pettit NE, Magierowski RH, et al. 2013. Hydrological connectivity structures concordant plant and animal assemblages according to niche rather than dispersal processes. Freshw Biol 58: 292–305. [CrossRef] [Google Scholar]
  • Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883. [CrossRef] [PubMed] [Google Scholar]
  • Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611. [Google Scholar]
  • Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36: 519–539. [CrossRef] [Google Scholar]
  • Zhu G, Gao Y, Zhu L. 2013. Delimiting the coastal geographic background to predict potential distribution of Spartina alterniflora. Hydrobiologia 717: 177–187. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.