Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 27
Number of page(s) 9
DOI https://doi.org/10.1051/kmae/2017019
Published online 16 June 2017
  • Abell R, Thieme M, Revenga C, et al. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58: 403–414. [CrossRef]
  • Beck J, Böller M, Erhardt A, Schwanghart W. 2014. Spatial bias in the GBIF database and its effect on modeling species' geographic distributions. Ecol Inform 19: 10–15. [CrossRef]
  • Bianchi TS, Allison MA. 2009. Large-river delta-front estuaries as natural “recorders” of global environmental change. Proc Natl Acad Sci USA 106: 8085–8092. [CrossRef]
  • Brinson MM, Malvárez AI. 2002. Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29: 115–133. [CrossRef]
  • Broennimann O, Guisan A. 2008. Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4: 585–589. [CrossRef] [PubMed]
  • Callen ST, Miller AJ. 2015. Signatures of niche conservatism and niche shift in the North American kudzu (Pueraria montana) invasion. Divers Distrib 21: 853–863. [CrossRef]
  • Corlett RT, Westcott DA. 2013. Will plant movements keep up with climate change? Trends Ecol Evol 28: 482–488. [CrossRef] [PubMed]
  • De Groot RS, Wilson MA, Boumans RM. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41: 393–408. [CrossRef]
  • Donaldson JE, Hui C, Richardson DM, Robertson MP, Webber BL, Wilson JR. 2014. Invasion trajectory of alien trees: the role of introduction pathway and planting history. Glob Change Biol 20: 1527–1537. [CrossRef]
  • Donoghue MJ, Edwards EJ. 2014. Biome shifts and niche evolution in plants. Annu Rev Ecol Evol Syst 45: 547–572. [CrossRef]
  • Early R, Sax DF. 2014. Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23: 1356–1365. [CrossRef]
  • Fernández M, Hamilton H. 2015. Ecological niche transferability using invasive species as a case study. PLOS ONE 10: e0119891. [CrossRef] [MathSciNet]
  • Grimaldo JT, Bini LM, Landeiro VL, et al. 2016. Spatial and environmental drivers of macrophyte diversity and community composition in temperate and tropical calcareous rivers. Aquat Bot 132: 49–61. [CrossRef]
  • Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: insights from biological invasions. Trends Ecol Evol 29: 260–269. [CrossRef] [PubMed]
  • Hussner A. 2012. Alien aquatic plant species in European countries. Weed Res 52: 297–306. [CrossRef]
  • Kaufman SR, Kaufman W. 2013. Invasive plants: a guide to identification, impacts, and control of common North American species. US: Stackpole Books.
  • Kelly R, Leach K, Cameron A, Maggs CA, Reid N. 2014. Combining global climate and regional landscape models to improve prediction of invasion risk. Divers Distrib 20: 884–894. [CrossRef]
  • Kolanowska M. 2013. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae). PLoS ONE 8: e77352. [CrossRef]
  • Kueffer C, Daehler CC, Torres-Santana CW, et al. 2010. A global comparison of plant invasions on oceanic islands. Perspect Plant Ecol Evol Syst 12: 145–161. [CrossRef]
  • Larson ER, Gallagher RV, Beaumont LJ, Olden JD. 2014. Generalized “avatar” niche shifts improve distribution models for invasive species. Divers Distrib 20: 1296–1306. [CrossRef]
  • Leppäkoski E, Gollasch S, Olenin S. 2013. Invasive aquatic species of Europe. Distribution, impacts and management. Germany: Springer Science & Business Media.
  • Lowe S, Browne M, Boudjelas S, De Poorter M. 2000. 100 of the world's worst invasive alien species: a selection from the global invasive species database. Auckland, New Zealand: Invasive Species Specialist Group.
  • Luque GM, Bellard C, Bertelsmeier C, et al. 2014. The 100th of the world's worst invasive alien species. Biol. Invasions 16: 981–985. [CrossRef]
  • Mainali KP, Warren DL, Dhileepan K, et al. 2015. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling. Glob Change Biol 21: 4464–4480. [CrossRef]
  • Medley KA. 2010. Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Glob Ecol Biogeogr 19: 122–133. [CrossRef]
  • Montecino V, Molina X, Kumar S, Castillo ML, Bustamante RO. 2014. Niche dynamics and potential geographic distribution of Didymosphenia geminata (Lyngbye) M. Schmidt, an invasive freshwater diatom in Southern Chile. Aquat Invasions 9: 507–519. [CrossRef]
  • Natalie GK, Myla FJA. 2015. Invasion risk in a warmer world: modeling range expansion and habitat preferences of three nonnative aquatic invasive plants. Invasive Plant Sci Manag 8: 436–449. [CrossRef]
  • Nunes AL, Tricarico E, Panov VE, Cardoso AC, Katsanevakis S. 2015. Pathways and gateways of freshwater invasions in Europe. Aquat Invasions 10: 359–370. [CrossRef]
  • Oke OA, Thompson KA. 2015. Distribution models for mountain plant species: the value of elevation. Ecol Model 301: 72–77. [CrossRef]
  • Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 1344–1348. [CrossRef] [PubMed]
  • Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231–259. [CrossRef]
  • Riis T, Olesen B, Clayton JS, Lambertini C, Brix H, Sorrell BK. 2012. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat Bot 102: 56–64. [CrossRef]
  • Rödder D, Engler JO. 2011. Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Glob Ecol Biogeogr 20: 915–927. [CrossRef]
  • Svirčev ZB, Tokodi N, Drobac D, Codd GA. 2014. Cyanobacteria in aquatic ecosystems in Serbia: effects on water quality, human health and biodiversity. Syst Biodivers 12: 261–270. [CrossRef]
  • Töpel M, Antonelli A, Yesson C, Eriksen B. 2012. Past climate change and plant evolution in western North America: a case study in Rosaceae. PLoS ONE 7: e50358. [CrossRef]
  • Václavík T, Kupfer JA, Meentemeyer RK. 2012. Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM). J Biogeogr 39: 42–55. [CrossRef]
  • Varela S, Anderson RP, García-Valdés R, Fernández-González F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37: 1084–1091.
  • Wan J, Wang C, Tan J, Yu F. 2017. Climatic niche divergence and habitat suitability of eight alien invasive weeds in china under climate change. Ecol Evol 7: 1541–1552. [CrossRef] [PubMed]
  • Warfe DM, Pettit NE, Magierowski RH, et al. 2013. Hydrological connectivity structures concordant plant and animal assemblages according to niche rather than dispersal processes. Freshw Biol 58: 292–305. [CrossRef]
  • Warren DL, Glor RE, Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883. [CrossRef] [PubMed]
  • Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611. [CrossRef]
  • Wiens JJ, Graham CH. 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36: 519–539. [CrossRef]
  • Zhu G, Gao Y, Zhu L. 2013. Delimiting the coastal geographic background to predict potential distribution of Spartina alterniflora. Hydrobiologia 717: 177–187. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.