Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 26
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2017015
Published online 02 June 2017
  • Allison SD, Vitousek P. 2004. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'I. Oecologia 141: 612–619. [PubMed] [Google Scholar]
  • Artigas J, Romani A, Sabater S. 2008. Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundam Appl Limnol 173: 255–264. [CrossRef] [Google Scholar]
  • Bärlocher F, Graça M. 2002. Exotic riparian vegetation lowers fungal diversity but not leaf decomposition in Portuguese streams. Freshw Biol 47: 1123–1135. [Google Scholar]
  • Casas JJ, Larrañaga A, Menéndez M, et al. 2013. Leaf litter decomposition of native and introduced tree species of contrasting quality in headwater streams: how does the regional setting matter? Sci Total Environ 458–460: 197–208. [CrossRef] [PubMed] [Google Scholar]
  • Chytrý M, Maskell LC, Pino J, et al. 2008. Habitat invasions by alien plants: a quantitative comparison between Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45: 448–458. [Google Scholar]
  • Cook R. 1992. Controls of sulfur cyclinging in small lakes. Interact Biogeochem Cycl Aquat Ecosyst 7: 211–223. [Google Scholar]
  • Dzyuban A. 2003. Bacteriobenthos of the upper Volga reservoirs as a characteristic of their environmental state. Water Res 30: 680–688. [Google Scholar]
  • Encyclopedia of Lithuania. 2008. Vilnius: Science Encyclopedia Publishing Institute. [Google Scholar]
  • Fargen C, Emery S, Carreiro M. 2015. Influence of Lonicera maackii invasion on leaf litter decomposition and macroinvertebrate communities in an Urban Stream. Nat Area J 35: 392–403. [CrossRef] [Google Scholar]
  • Galvonaitė A, Misiūnienė M, Valiukas D, Buitkuvienė MS. 2007. Lithuanian climate. Vilnius: Lithuanian Hydrometeorological Service, 180 p. (in Lithuanian). [Google Scholar]
  • Graça MAS, Canhoto C. 2006. Leaf litter processing in low order streams. Limnetica 25: 1–10. [Google Scholar]
  • Gudžinskas Z, Kazlauskas M, Pilāte D, et al. 2014. Invasive organisms in transboundary area of Lithuania and Latvia. BMK Publishers, pp. 19–20. [Google Scholar]
  • Gulis V, Suberkropp K. 2006. Fungi: biomass, production, and sporulation of aquatic hyphomycetes. In: Hauer FR, Lamberti GA, eds. Methods in stream ecology, 2nd ed. Amsterdam: Elsevier, pp. 311–325. [Google Scholar]
  • Harner M, Crenshaw C, Abelho M, Stursova M, Shah JJ, Sinsabaugh R. 2009. Decomposition of leaf litter from a native tree and an actinorhizal invasive riparian habitats. Ecol Appl 19: 1135–1146. [CrossRef] [PubMed] [Google Scholar]
  • Hieber M, Gessner MO. 2002. Contribution of stream detrivores, fungi and bacteria to leaf breakdown based on biomass estimates. Ecology 83: 1026–1038. [Google Scholar]
  • Holmer M, Storkholm P. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46: 431–451. [Google Scholar]
  • Hood WG, Naiman RJ. 2000. Vulnerability of riparian zones to invasion by exotic vascular plants. Plant Ecol 148: 105–114. [Google Scholar]
  • Jaeger H, Alencastro MJ, Kaupenjohann M, Kowarik I. 2013. Ecosystem changes in Galapagos highlands by the invasive tree Cinchona pubescens. Plant Soil 371: 629–640. [Google Scholar]
  • Janušauskaitė D, Straigytė L. 2011. Leaf litter decomposition differences between alien and native maple species. Balt For 17(2): 189–196. [Google Scholar]
  • Jonsson A, Meili M, Bergström AK, Jansson M. 2001. Whole lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden). Limnol Oceanogr 46: 1691–1700. [Google Scholar]
  • Karnachuk O, Pimenov N, Yusupov S, Frank Y, Puhakka Y, Ivanov M. 2006. Distribution, diversity and activity of sulfate reducing bacteria in the water column in Gek Gel Lake. Microbiology 75: 82–89. [Google Scholar]
  • Kluepfel D. 1988. Screening of prokaryotes for cellulose-and hemicellulose-degrading enzymes. In: Wood WA, Kellogg ST, eds. Methods in enzymology, vol. 160. London: Academic Press, pp. 181–185. [Google Scholar]
  • Krevs A, Kucinskiene A. 2012. Microbial decomposition of organic matter in the bottom sediments of small lakes of the urban landscape (Lithuania). Microbiology 81: 477–483. [Google Scholar]
  • Krevš A, Darginavičienė J, Jurkonienė S, et al. 2013. Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition. Environ Pollut 173: 75–84. [CrossRef] [PubMed] [Google Scholar]
  • Kučinskienė A, Krevš A. 2006. Mineralization of organic matter in bottom sediments of the littoral zones of four Lithuanian lakes. Ekologija 1: 40–47. [Google Scholar]
  • Kuznetsov SI, Dubinina GA. 1989. Methods of investigation of aquatic microorganisms. Moskow: Nauka, 285 p. (in Russian). [Google Scholar]
  • Kuznetsov SI, Saralov AI, Nazina TN. 1985. Microbiological processes of turnover of carbon and nitrogen in lakes. Moscow: Nauka, 213 p. (in Russian). [Google Scholar]
  • Li JH, Takii S, Kotakemori R, Hayashi H. 1996. Sulfate reduction in profundal sediments in Lake Kizaki, Japan. Hydrobiologia 333: 201–208. [Google Scholar]
  • MacKenzie RA, Cormier N, Kinslow F, Wiegner TN, Strauch AM. 2013. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river. Freshw Sci 32: 1036–1052. [Google Scholar]
  • Magurran AE. 1988. Ecological diversity and its measurement. London/Sydney: Springer. [CrossRef] [Google Scholar]
  • Mansson KF, Falkengren-Grerup U. 2003. The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralisation and litter C/N rations in oak (Quercus robur L.) forests. For Ecol Manage 179: 455–467. [Google Scholar]
  • Manusadžianas L, Darginavičienė J, Gylytė B, et al. 2014. Ecotoxicity effects triggered in aquatic organisms by invasive Acer negundo and native Alnus glutinosa leaf leachates obtained in the process of aerobic decomposition. Sci Total Environ 496: 35–44. [CrossRef] [PubMed] [Google Scholar]
  • Marano A, Saparrat M, Steciow M, et al. 2013. Comparative analysis of leaf-litter decomposition from the native Pouteria salicifolia and the exotic invasive Ligustrum lucidum in a lowland stream (Buenos Aires, Argentina). Fundam Appl Limnol 183: 297–307. [CrossRef] [Google Scholar]
  • Martinez A, Larranaga A, Perez J, Descals E, Basaguren A, Pozo J. 2013. Effects of pine plantations on structural and functional attributes of forested streams. For Ecol Manage 310: 147–155. [Google Scholar]
  • Medina-Villar S, Alonso A, Vazquez de Aldana B, Perez-Corona E. 2015. Decomposition and biological colonization of native and exotic leaf litter in a Central Spain stream. Limnetica 34: 293–310. [Google Scholar]
  • Molinero J, Pozo J. 2006. Organic matter, nitrogen and phosphorus fluxes associated with leaf litter in two small streams with different riparian vegetation: a budget approach. Arch Hydrobiol 166: 363–385. [CrossRef] [Google Scholar]
  • Moretti MS, Gonçalves JF, Callisto M. 2007. Leaf breakdown in two tropical streams: differences between single and mixed species packs. Limnologica 37: 250–258. [Google Scholar]
  • Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham W, Herbert RA. 1989. Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different dates of sulphate reduction. J Gen Microbiol 135: 175–187. [Google Scholar]
  • Porter K, Feig YS. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25: 943–948. [Google Scholar]
  • Postgate JR. 1984. The sulfate reducing bacteria, 2nd ed. Cambridge Univ. Press, 208 p. [Google Scholar]
  • Rodrigues APL, Graça MAS. 1997. Enzymatic analysis of leaf decomposition in freshwater by selected aquatic hyphomycetes and terrestrial fungi. Sydowia 49: 160–173. [Google Scholar]
  • Serra MN, Albarino R, Diaz Villanueva V. 2013. Invasive Salix fragilis alters benthic invertebrate communities and litter decomposition in northern Patagonian streams. Hydrobiology 701: 173–188. [CrossRef] [Google Scholar]
  • Sorokin J. 1999. Aquatic microbial ecology. Backhaus Publishers, 247 p. [Google Scholar]
  • Straigytė L, Cekstere G, Laivins M, Marozas V. 2015. The spread, intensity and invasiveness of the Acer negundo in Riga and Kaunas. Dendrobiology 74: 157–168. [CrossRef] [Google Scholar]
  • Swan CM, Healey B, Richardson DC. 2008. The role of native riparian tree species in decomposition of invasive tree of heaven (Ailanthus altissima) leaf litter in an urban stream. Ecoscience 15: 27–35. [CrossRef] [Google Scholar]
  • Volkov II, Zhabina NN. 1980. Methods for determination of various sulfur compounds in marine sediments. Moscow: Nauka, 216 p. (in Russian). [Google Scholar]
  • Wallace J, Eggert S, Meyer J, Webster J. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 227: 102–104. [Google Scholar]
  • Weijers MJ, Janse JH, Alkemade R, Verhoeven TA. 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquat Conserv 19: 104–112. [Google Scholar]
  • Weissteiner CJ, Bouraoui F, Aloe A. 2013. Reduction of nitrogen and phosphorus loads to European rivers by riparian buffer zones. Knowl Manag Aquat Ecosyst 408: 1–15. [Google Scholar]
  • Woszczyk M, Bechtel A, Cieslinski R. 2011. Interactions between microbial degradation of sedimentary organic matter and lake hydrodynamics in shallow water bodies: insights from Lake Sarbsko (northern Poland). J Limnol 70: 293–304. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.