Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 28
Number of page(s) 12
Published online 23 June 2017
  • Ahmed A, El Hamshary E. 2005. Larvicidal, miracidiacidal and cercaricidal activities of the Egyptian plant, Iris pseudacorus. J Egypt Soc Parasitol 35: 41–48. [PubMed] [Google Scholar]
  • Bates D, Maechler M. 2010. Matrix: sparse and dense matrix classes and methods. R package, version 0999375-43. [Google Scholar]
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289–300. [Google Scholar]
  • Blocksom KA, Flotemersch JE. 2005. Comparison of macroinvertebrate sampling methods for nonwadeable streams. Environ Monit Assess 102: 243–262. [PubMed] [Google Scholar]
  • Bowles DE, Peitz DG, Cribbs JT. 2013. Aquatic invertebrate community structure in the Niobrara River, Agate Fossil Beds National Monument, Nebraska, 1996–2009. Great Plains Res 23: 1–10. [Google Scholar]
  • Cairns J, Pratt JR. 1993. A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg DM, Resh VH, eds. Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall, pp. 10–27. [Google Scholar]
  • Canton SP, Chadwick JW. 1983. Aquatic insect communities of natural and artificial substrates in a montane stream. J Freshw Ecol 2: 153–158. [CrossRef] [Google Scholar]
  • Carpenter S, Kitchell JF, Hodgson JR, et al. 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876. [CrossRef] [PubMed] [Google Scholar]
  • Carter JL, Resh VH. 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. J N Am Benthol Soc 20: 658–682. [CrossRef] [Google Scholar]
  • Czerniawska-Kusza I. 2004. Use of artificial substrates for sampling benthic macroinvertebrates in the assessment of water quality of large lowland rivers. Pol J Environ Stud 13: 579–584. [Google Scholar]
  • De Pauw N, Roels D, Fontoura AP. 1986. Use of artificial substrates for standardized sampling omacroinvertebrates in the assessment of water quality by the Belgian Biotic Index. Hydrobiologia 133: 237–258. [Google Scholar]
  • Galat DL, Berry Jr CR, Peters EJ, White RG. 2005. Missouri river basin. In: Benke AC, Cushing CE, eds. Rivers of North America. New York, USA: Elsevier Inc., pp. 427–480. [Google Scholar]
  • Henderson, B. 2006. Exploring between site differences in water quality trends: a functional data analysis approach. Environmetrics 17: 65–80. [MathSciNet] [Google Scholar]
  • Hester FE, Dendy J. 1962. A multiple-plate sampler for aquatic macroinvertebrates. Trans Am Fish Soc 91: 420–421. [Google Scholar]
  • Holt C, Pfitzer D, Scalley C, Caldwell B, Capece P, Batzer D. 2015. Longitudinal variation in macroinvertebrate assemblages below a large-scale hydroelectric dam. Hydrobiologia 755: 13–26. [Google Scholar]
  • Jackson JK, Füreder L. 2006. Long-term studies of freshwater macroinvertebrates: a review of the frequency, duration and ecological significance. Freshwater Biol 51: 591–603. [CrossRef] [Google Scholar]
  • Jackson ST, Betancourt JL, Booth RK, Gray ST. 2009. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc Natl Acad Sci USA 106: 19685–19692. [CrossRef] [Google Scholar]
  • Johnson RK, Wiederholm T, Rosenberg DM. 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall, pp. 40–158. [Google Scholar]
  • Legendre P, Legendre L. 1998. Numerical ecology. New York, USA: Elsevier Inc. [Google Scholar]
  • Letovsky E, Myers IE, Canepa A, McCabe DJ. 2012. Differences between kick sampling techniques and short-term Hester-Dendy sampling for stream macroinvertebrates. Bios 83: 47–55. [Google Scholar]
  • Macanowicz N, Boeing WJ, Gould WR. 2013. Evaluation of methods to assess benthic biodiversity of desert sinkholes. Evaluation 32: 1101–1110. [Google Scholar]
  • Mazor RD, Purcell AH, Resh VH. 2009. Long-term variability in bioassessments: a twenty-year study from two northern California streams. Environ Manage 43: 1269–1286. [CrossRef] [PubMed] [Google Scholar]
  • McCabe DJ, Hayes-Pontius EM, Canepa A, Berry KS, Levine BC. 2012. Measuring standardized effect size improves interpretation of biomonitoring studies and facilitates meta-analysis. Freshw Sci 31: 800–812. [Google Scholar]
  • Merritt RW, Cummins KW, Berg MB. 2008. An introduction to the aquatic insects of North America. Dubuque, IA: Kendall/Hunt Publishing Company. [Google Scholar]
  • Oksanen J, Kindt R, Legendre P, et al. 2007. The vegan package. Community ecology package 10. [Google Scholar]
  • Ramsay JO. 2006. Functional data analysis. Encyclopedia of statistical sciences. New Jersey, USA: John Wiley & Sons. [Google Scholar]
  • Rosenberg DM, Resh VH. 1993. Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall. [Google Scholar]
  • Shan Y, Wang Z, Luo X, Zheng Z. 2015 Allelopathic inhibition effect of four aquatic macrophytes on Microcystic aeruginosa growth. Fresenius Environ Bull 24: 4025–4033. [Google Scholar]
  • Shaw DW, Minshall GW. 1980. Colonization of an introduced substrate by stream macroinvertebrates. Oikos 34: 259–271. [Google Scholar]
  • Shelton JM, Samways MJ, Day JA. 2015. Non-native rainbow trout change the structure of benthic communities in headwater streams of the Cape Floristic Region, South Africa. Hydrobiologia 745: 1–15. [Google Scholar]
  • Smith DG. 2001. Pennak's freshwater invertebrates of the United States: Porifera to Crustacea. New York, USA: John Wiley & Sons. [Google Scholar]
  • Spurgeon JJ, Stasiak RH, Cunningham GR, Pope KL, Pegg MA. 2014. Status of native stream fishes within selected protected areas of the Niobrara River in western Nebraska. Great Plains Res 24: 71–78. [CrossRef] [Google Scholar]
  • Surber EW. 1936. Rainbow trout and bottom fauna production in one mile of stream. Trans Am Fish Soc 66: 193–202. [Google Scholar]
  • Thien SJ. 1979. A flow diagram for teaching texture by feel analysis. J Agron Educ 8: 54–55. [Google Scholar]
  • Thorp JH, Covich AP. 2009. Ecology and classification of North American freshwater invertebrates. New York, USA: Academic Press. [Google Scholar]
  • Tronstad LM. 2012. Aquatic invertebrate monitoring at Agate Fossil Beds National Monument: 2010 annual report. Natural Resource Technical Report NPS/NGPN/NRTR-2012/654. Fort Collins, Colorado: National Park Service. Available at: [Google Scholar]
  • Tronstad LM. 2015. Aquatic invertebrate monitoring at Agate Fossil Beds National Monument: 2014 annual report. Natural Resources Technical Report. [Google Scholar]
  • Tronstad LM, Hall Jr RO, Koel TM, Gerow KG. 2010. Introduced lake trout produced a four-level trophic cascade in Yellowstone Lake. Trans Am Fish Soc 139: 1536–1550. [Google Scholar]
  • Waters TF. 1969. Subsampler for dividing large samples of stream invertebrate drift. Limnol Oceanogr 14: 813–815. [Google Scholar]
  • Waters TF, Knapp RJ. 1961. An improved stream bottom fauna sampler. Trans Am Fish Soc 90: 225–226. [Google Scholar]
  • Wickham H. 2011. The split-apply-combine strategy for data analysis. J Stat Software 40: 1–29. [Google Scholar]
  • Wilmot O, Tronstad L, Hall R, Koel T, Arnold J. 2016. Lake trout-induced spatial variation in the benthic invertebrates of Yellowstone Lake. Park Sci 32: 25–35. [Google Scholar]
  • Wilson KA, Magnuson JJ, Lodge DM, et al. 2004. A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Can J Fish Aquat Sci 62: 2255–2266. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.