Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 418, 2017
Article Number 3
Number of page(s) 20
Published online 25 January 2017
  • Borisov SN. 2015. Dragonflies (Odonata) of thermal springs in central Asia. Entomol Rev 95: 1203–1211. [CrossRef] [Google Scholar]
  • Boulton AJ. 2005. Chances and challenges in the conservation of groundwaters and their dependent ecosystems. Aquat Conserv 15: 319–323. [CrossRef] [Google Scholar]
  • Buchwald R. 1992. Vegetation and dragonfly fauna – characteristics and examples of biocenological field studies. Vegetatio 101: 99–107. [Google Scholar]
  • Buczyński P. 2015. Dragonflies (Odonata) of anthropogenic waters in middle-eastern Poland. Wydawnictwo Mantis, Olsztyn, 272 p. [Google Scholar]
  • Buczyński P. 1999. Dragonflies (Odonata) of springs areas in Poland − state of research and proposes of further study. In: Biesiadka E, Czachorowski S, eds. Springs in Poland, State of research, monitoring and protection. Wydawnictwo Wyższej Szkoły Pedagogicznej w Olsztynie, Olsztyn, pp. 31–36. [Google Scholar]
  • Buczyński P, Czachorowski S, Moroz M, Stryjecki R. 2003. Odonata, Trichoptera, Coleoptera, and Hydrachnidia of Springs in Kazimierski Landscape Park (Eastern Poland) and factors affecting the characters of these ecosystems. Suppl Acta Hydrobiol 5: 13–29. [Google Scholar]
  • Buczyński P, Lewandowski K. 2011. Dragonfly (Odonata) fauna of Olsztyn (Poland). In: Indykiewicz P, Jerzak L, Böhner J, Kavanagh B, eds. Urban fauna. Studies of animal biology, ecology and conservation in European cities. UTP Bydgoszcz, Bydgoszcz, pp. 107–117. [Google Scholar]
  • Buczyński P, Zawal A, Stępień E, Buczyńska E, Pešić V. 2014. Contribution to the knowledge of dragonflies (Odonata) of Montenegro, with the first record of Ophiogomphus cecilia (Fourcroy, 1785). Ann Univ M Curie-Skłodowska Sec C 68: 57–71. [Google Scholar]
  • Buss DF, Baptista DF, Nessimiam JL, Egler M. 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188. [CrossRef] [Google Scholar]
  • Cantonati M, Gerecke R, Bertuzzi E. 2006. Springs of the Alps – sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562: 59–96. [CrossRef] [Google Scholar]
  • Clarke KR, Gorley RN. 2015. PRIMER v7: User Manual/Tutorial. PRIMER-E, Plymouth, 296 p. [Google Scholar]
  • Conrad KF, Willson KH, Harvey IF, Thomas CJ, Sherratt TN. 1999. Dispersal characteristics of seven odonate species in an agricultural landscape. Ecography 22: 524–531. [CrossRef] [Google Scholar]
  • De Knijf G, Vanappelghem C, Demolder H. 2013. Odonata from Montenegro, with notes on taxonomy, regional diversity and conservation. Odonatologica 42: 1–29. [Google Scholar]
  • Di Sabatino A, Cicolani B, Gerecke R. 2003. Biodiversity and distribution of water mites (Acari, Hydrachnidia) in spring habitats. Freshw Biol 48: 2163–2173. [CrossRef] [Google Scholar]
  • Dmitrović D, Savić D, Pešić V. 2016. Discharge, substrate type and temperature as factors affecting gastropod assemblages in springs in northwestern Bosnia and Herzegovina. Arch Biol Sci Belgrade 68: 613–621. [CrossRef] [Google Scholar]
  • Dolný A, Bárta D, Lhota S, Rusdianto, Drozd P. 2011. Dragonflies (Odonata) in the Bornean rain forest as indicators of changes in biodiversity resulting from forest modification and destruction. Trop Zool 24: 63–86. [Google Scholar]
  • Dumnicka E, Galas J, Koperski P. 2007. Benthic Invertebrates in Karst Springs: Does Substratum or Location Define Communities? Int Rev Hydrobiol 92: 452–464. [CrossRef] [Google Scholar]
  • Gerecke R, Di Sabatino A. 2003. Water mites (Acari, Hydrachnellae) and spring typology in Sicily. Crunoecia 5: 35–41. [Google Scholar]
  • Gligorović B, Pešić V, Zeković A. 2010. Checklist of the Dragonflies of the Skadar Lake Area. Scr Sci Nat Podgor 1: 101–107. [Google Scholar]
  • Gligorović B, Savić A, Protić Lj, Pešić V. 2016. Ecological patterns of water bugs (Hemiptera: Heteroptera) assemblages in karst springs: a case study from central Montenegro. Oceanol Hydrobiol Stud 45: 554–563. [Google Scholar]
  • Goertzen D, Suhling F. 2013. Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. J Insect Conserv 17: 399–409. [Google Scholar]
  • Hahn HJ. 2000. Studies on classifying of undisturbed springs in southwestern Germany by macrobenthic communities. Limnologica 30: 247–259. [CrossRef] [Google Scholar]
  • Harabiš F, Dolný A. 2010. Ecological factors determining the density-distribution of Central European dragonflies (Odonata). Eur J Entomol 107: 571–577. [CrossRef] [Google Scholar]
  • Harabiš F, Dolný A. 2012. Human altered ecosystems: suitable habitats as well as ecological traps for dragonflies (Odonata): the matter of scale. J Insect Conserv 16: 121–130. [CrossRef] [Google Scholar]
  • Hof C, Brändle M, Brandl R. 2006. Lentic odonates have larger and more northern ranges than lotic species. J Biogeogr 33: 63–70. [CrossRef] [Google Scholar]
  • Ilmonen J, Paasivirta L. 2005. Benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics: patterns in abundance and diversity. Hydrobiologia 533: 99–113. [CrossRef] [Google Scholar]
  • Johansson F, Englund G, Brodin T, Gardfjell H. 2006. Species abundance models and patterns in dragonfly communities: effects of fish predators. Oikos 114: 27–36. [CrossRef] [Google Scholar]
  • Knight TM, McCoy MW, Chase JM, McCoy KA, Holt RD. 2005. Trophic cascades across ecosystems. Nature 437: 880–883. [CrossRef] [PubMed] [Google Scholar]
  • Kovach WL. 2007. MVSP – A Multivariate Statistical Package for Windows, ver. 3.21. Kovach Computing Services, Pentraeth, Wales, UK. [Google Scholar]
  • Křoupalová V, Bojková J, Schenková J, Pařil P, Horsák M. 2011. Small-scale distribution of aquatic macroinvertebrates in two spring fens with different groundwater chemistry. Int Rev Hydrobiol 96: 235–256. [CrossRef] [Google Scholar]
  • Legendre P, Oksanen J, ter Braak CJF. 2011. Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2: 269–277. [CrossRef] [Google Scholar]
  • Martin P, Brunke M. 2012. Faunal typology of lowland springs in northern Germany. Freshw Sci 31: 542–562. [CrossRef] [Google Scholar]
  • McCauley SJ. 2007. The role of local and regional processes in structuring larval dragonfly distributions across habitat gradients. Oikos 116: 121–133. [CrossRef] [Google Scholar]
  • Monteiro-Junior CS, Juen L, Hamada N. 2015. Analysis of urban impacts on aquatic habitats in the central Amazon basin: adult odonates as bioindicators of environmental quality. Ecol Indic 48: 303–311. [CrossRef] [Google Scholar]
  • Oertli B. 2008. The use of dragonflies in the assessment and monitoring of aquatic habitats. In: Córdoba-Aguilar A, ed. Dragonflies and damselflies: model organisms for ecological and evolutionary research. Oxford University Press, Oxford, pp. 79–95. [Google Scholar]
  • Oliveira-Junior JMB, Shimano Y, Gardner TA, Hughes RM, De Marco PJ, Juen L. 2015. Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecol 40: 733–744. [CrossRef] [Google Scholar]
  • Pakulnicka J, Buczyński P, Dąbkowski P, et al. 2016. Aquatic beetles (Coleoptera) in springs of a small lowland river: habitat factors vs. landscape factors. Knowl Manag Aquat Ecosyst 417: 29. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pešić V, Glöer P. 2013. A new freshwater snail genus (Hydrobiidae, Gastropoda) from Montenegro, with a discussion on gastropod diversity and endemism in Skadar Lake. ZooKeys 281: 69–90. [CrossRef] [Google Scholar]
  • Pešić V, Dmitrović D, Savić A, von Fumetti S. 2016. Studies on eucrenal-hypocrenal zonation of springs along the river mainstream: a case study of a karst canyon in Bosnia and Herzegovina. Biologia 71: 809–817. [Google Scholar]
  • Płóciennik M, Dmitrović D, Pešić V, Gadawski P. 2016. Ecological patterns of Chironomidae assemblages in Dynaric karst springs. Knowl Manag Aquat Ecosyst 411: 11. [Google Scholar]
  • Remsburg AJ, Turner MG. 2009. Aquatic and terrestrial drives of dragonfly (Odonata) assemblages within and among north-temperate lakes. J North Am Benthol Soc 28: 44–56. [CrossRef] [Google Scholar]
  • Savić A, Dmitrović D, Pešić V. in press. Ephemeroptera, Plecoptera and Trichoptera assemblages of karst springs in relation to environmental factors: a case study in central Bosnia and Hercegovina. Turk J Zool. [Google Scholar]
  • Schindler M, Fesl C, Chovanec A. 2003. Dragonfly associations (Insecta: Odonata) in relation to habitat variables: a multivariate approach. Hydrobiologia 497: 169–180. [CrossRef] [Google Scholar]
  • Strange AM, Griffiths GH, Hine S, Young K, Holloway GJ. 2007. Habitat associations of the Small Red Damselfly (Ceriagrion tenellum) (De Villiers) in heathland in southern England (Zygoptera: Coenagrionidae). J Insect Conserv 11: 241–249. [CrossRef] [Google Scholar]
  • Stryjecki R, Zawal A, Stępień E, et al. 2016. Water mites (Acari, Hydrachnidia) of water bodies of the Krąpiel River valley: interactions in the spatial arrangement of a river valley. Limnology 17: 247–261. [CrossRef] [Google Scholar]
  • ter Braak CJF. 1986. Canonical Correspondence Analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179. [CrossRef] [Google Scholar]
  • ter Braak CJF, Wiertz J. 1994. On the statistical analysis of vegetation change: a wetland affected by water extraction and soil acidification. J Veg Sci 5: 361–372. [CrossRef] [Google Scholar]
  • von Fumetti S, Nagel P. 2012. Discharge variability and its effect on faunistic assemblages in springs. Freshw Sci 31: 647–656. [CrossRef] [Google Scholar]
  • von Fumetti S, Nagel P, Scheifhacken N, Baltes B. 2006. Factors governing macrozoobenthic assemblages in perennial springs in north-western Switzerland. Hydrobiologia 568: 467–475. [CrossRef] [Google Scholar]
  • Willigalla C, Fartmann T. 2012. Patterns in the diversity of dragonflies (Odonata) in cities across Central Europe. Eur J Entomol 109: 235–245. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.