Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 25
Number of page(s) 11
Published online 03 May 2016
  • Ågren G.I., 2004. The C:N:P stoichiometry of autotrophs – theory and observations. Ecol. Lett., 7, 185–191. [CrossRef] [Google Scholar]
  • Ågren G.I., 2008. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst., 39, 153–170. [CrossRef] [Google Scholar]
  • Ågren G.I. and Weih M., 2012. Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytol., 194, 944–952. [CrossRef] [PubMed] [Google Scholar]
  • Berdalet E., Latasa M. and Estrada M., 1994. Effects of nitrogen and phosphorus starvation on nucleic acid and protein content of Heterocapsa sp. J. Plankton Res., 16, 303–316. [CrossRef] [Google Scholar]
  • Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. [Google Scholar]
  • Bremner J.M., 1996. Nitrogen-total. In: Sparks D.L. et al. (eds.), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, 1085–1123. [Google Scholar]
  • Cernusak L.A., Winter K. and Turner B.L., 2010. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytol., 185, 770–779. [CrossRef] [PubMed] [Google Scholar]
  • Elser J.J., Acharya K., Kyle M., Cotner J., Makino W., Markow T., Watts T., Hobbie S., Fagan W., Schade J., Hood J. and Sterner R.W., 2003. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett., 6, 936–943. [CrossRef] [Google Scholar]
  • Elser J.J., Fagan W.F., Kerkhoff A.J., Swenson N.G. and Enquist B.J., 2010. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol., 186, 593–608. [CrossRef] [PubMed] [Google Scholar]
  • Flynn K.J., Raven J.A., Rees T.A.V., Finkel Z., Quigg A. and Beardall J., 2010. Is the growth rate hypothesis applicable to microalgae? J. Phycol., 46, 1–12. [CrossRef] [Google Scholar]
  • Frost P.C., Evans-White M.A., Finkel Z.V., Jensen T.C. and Matzek V., 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109, 18–28. [CrossRef] [Google Scholar]
  • Giordano M., Palmucci M. and Raven J.A., 2015. Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant Cell Environ., 38, 2313–2317. [CrossRef] [PubMed] [Google Scholar]
  • Güsewell S., 2004. N: P ratios in terrestrial plants: variation and functional significance. New Phytol., 164, 243–266. [CrossRef] [Google Scholar]
  • Hessen D.O., Ågren G.I., Anderson T.R., Elser J.J. and de Ruiter P.C., 2004. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179–1192. [CrossRef] [Google Scholar]
  • Hessen D.O., Jensen T.C., Kyle M. and Elser J.J., 2007. RNA responses to N- and P-limitation: reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct. Ecol., 21, 956–962. [Google Scholar]
  • Karimi R. and Folt C.L., 2006. Beyond macronutrients: element variability and multielement stoichiometry in freshwater invertebrates. Ecol. Lett., 9, 1273–1283. [CrossRef] [PubMed] [Google Scholar]
  • Karpinets T., Greenwood D., Sams C. and Ammons J., 2006. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis. BMC Biol., 4, 30. [CrossRef] [PubMed] [Google Scholar]
  • Klausmeier C.A., Litchman E., Daufresne T. and Levin S.A., 2004. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429, 171–174. [CrossRef] [PubMed] [Google Scholar]
  • Kuo S., 1996. Phosphorus. In: Sparks D.L. et al., (eds.), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America and American Society of Agronomy, Madison, 869–920. [Google Scholar]
  • Lukas M., Sperfeld E. and Wacker A., 2011. Growth Rate Hypothesis does not apply across colimiting conditions: cholesterol limitation affects phosphorus homoeostasis of an aquatic herbivore. Funct. Ecol., 25, 1206–1214. [CrossRef] [Google Scholar]
  • Makino W., Cotner J., Sterner R. and Elser J., 2003. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct. Ecol., 17, 121–130. [CrossRef] [Google Scholar]
  • Matzek V. and Vitousek P.M., 2009. N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis. Ecol. Lett., 12, 765–771. [CrossRef] [PubMed] [Google Scholar]
  • Meng W., 2009. System engineering for water pollution control at the watershed level in China. Front. Environ. Sci. Engin. China, 3, 443–452. [CrossRef] [Google Scholar]
  • Meunier C.L., Malzahn A.M. and Boersma M., 2014. A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts. PLoS ONE 9, e107737. [CrossRef] [PubMed] [Google Scholar]
  • Moss B., Jeppesen E., Søndergaard M., Lauridsen T. and Liu Z., 2012. Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia, 710, 3–21. [CrossRef] [Google Scholar]
  • Niklas K.J., 2006. Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann. Bot., 97, 155–163. [CrossRef] [PubMed] [Google Scholar]
  • Peng Y., Niklas K.J. and Sun S., 2011. The relationship between relative growth rate and whole-plant C : N : P stoichiometry in plant seedlings grown under nutrient-enriched conditions. J. Plant Ecol., 4, 147–156. [CrossRef] [Google Scholar]
  • Persson J., Fink P., Goto A., Hood J.M., Jonas J. and Kato S., 2010. To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos, 119, 741–751. [CrossRef] [Google Scholar]
  • Poorter H. and Bergkotte M., 1992. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15, 221–229. [CrossRef] [Google Scholar]
  • Reef R., Ball M.C., Feller I.C. and Lovelock C.E., 2010. Relationships among RNA:DNA ratio, growth and elemental stoichiometry in mangrove trees. Funct. Ecol., 24, 1064–1072. [CrossRef] [Google Scholar]
  • Sistla S.A. and Schimel J.P., 2012. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol., 196, 68–78. [CrossRef] [PubMed] [Google Scholar]
  • Sterner R.W. and Elser J.J., 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, New Jersey. [Google Scholar]
  • Villar-Argaiz M., Medina-Sánchez J.M. and Carrillo P., 2002. Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83, 1899–1914. [CrossRef] [Google Scholar]
  • Vrede T., Persson J. and Aronsen G., 2002. The influence of food quality (P:C ratio) on RNA: DNA ratio and somatic growth rate of Daphnia. Limnol. Oceanogr., 47, 487–494. [Google Scholar]
  • Wang Y., Gao G., Qin B. and Wang X. 2012. Ecophysiological and anatomical responses of Vallisneria natans to nitrogen and phosphorus enrichment. Knowl. Manag. Aquat. Ecosyst., 405, 05. [CrossRef] [EDP Sciences] [Google Scholar]
  • Weider L.J., Glenn K.L., Kyle M. and Elser J.J., 2004. Associations among ribosomal (r) DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnol. Oceanogr., 49, 1417–1423. [CrossRef] [Google Scholar]
  • Xing W., Wu H., Shi Q., Hao B., Liu H., Wang Z. and Liu G., 2015. Multielement stoichiometry of submerged macrophytes across Yunnan plateau lakes (China). Sci. Rep., 5, 10186. [CrossRef] [PubMed] [Google Scholar]
  • Yu Q., Chen Q., Elser J.J., He N., Wu H., Zhang G., Wu J., Bai Y. and Han X., 2010. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecol. Lett., 13, 1390–1399. [CrossRef] [PubMed] [Google Scholar]
  • Yu Q., Elser J.J., He N., Wu H., Chen Q., Zhang G. and Han X., 2011. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 166, 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Yu Q., Wu H., He N., Lü X., Wang Z., Elser J.J., Wu J. and Han X., 2012. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass. PLoS ONE, 7, e32162. [CrossRef] [PubMed] [Google Scholar]
  • Yu Q., Wang H.Z., Li Y., Shao J.C., Liang X.M., Jeppesen E. and Wang H.J., 2015. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations. Water Res., 83, 385–395. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.