Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 417, 2016
Article Number 20
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2016007
Published online 01 April 2016
  • Adamowicz W., Louviere J. andWilliams M., 1994. Combining revealed and stated preference methods for valuing environmental amenities. J. Environ. Econ. Manag., 26, 271–292. [CrossRef] [Google Scholar]
  • Alongi D.M., 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf. S., 76, 1–13. [CrossRef] [Google Scholar]
  • Alpizar F., Carlsson F. andMartinsson P., 2003. Using choice experiments for non-market valuation. Economic Issues – Stoke on Trent., 8, 83–110. [Google Scholar]
  • Bakkegaard R., Jacobsen J., and Thorsen B., 2012. Using a hypothetical auction frame to elicit stated compensation needs to avoid deforestation among households in the Brazilian Amazon. Scandinavian Forest Economics, Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, 23–26, issue 44. [Google Scholar]
  • Bennett J. and Blamey R., 2001. The Choice Modelling Approach to Environmental Valuation, Edward Elgar, London, 288 p. [Google Scholar]
  • Birol E. andCox V., 2007. Using choice experiments to design wetland management programmes: The case of Severn Estuary Wetland, UK. J. Environ. Plann. Manage., 50, 363–380. [CrossRef] [Google Scholar]
  • Boxall P.C., Adamowicz W.L., Swait J., Williams M. andLouviere J., 1996. A comparison of stated preference methods for environmental valuation. Ecol. Econ., 18, 243–253. [CrossRef] [Google Scholar]
  • Braat L.C. and de Groot R., 2012. The ecosystem services agenda: bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv., 1, 4–15. [CrossRef] [Google Scholar]
  • Braden J.B. and Kolstad C.D., 1991. Measuring the demand for environmental quality, Elsevier Science, North-Holland, Co. [Google Scholar]
  • Bush G., Hanley N. and Rondeau D., 2011. Comparing opportunity cost measures of forest conservation in Uganda; implications for assessing the distributional impacts of forest management approaches (No. 2011–12), University of Stirling, Division of Economics. [Google Scholar]
  • Bush G., Hanley N., Moro M. andRondeau D., 2013. Measuring the Local Costs of Conservation: A Provision Point Mechanism for Eliciting Willingness to Accept Compensation. Land. Econ., 89, 490–513. [CrossRef] [Google Scholar]
  • Carlsson F., Frykblom P. andLiljenstolpe C., 2003. Valuing wetland attributes: an application of choice experiments. Ecol. Econ., 47, 95–103. [CrossRef] [Google Scholar]
  • Casey J.F., Kahn J.R. andRivas A.A., 2008. Willingness to accept compensation for the environmental risks of oil transport on the Amazon: a choice modeling experiment. Ecol. Econ., 67, 552–559. [CrossRef] [Google Scholar]
  • Christie M., Fazey I., Cooper R., Hyde T. andKenter J.O., 2012. An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecol. Econ., 83, 67–78. [CrossRef] [Google Scholar]
  • Costanza R., de Groot R., Sutton P., van der Ploeg S., Anderson S.J., Kubiszewski I., Farber S. andTurner R.K., 2014. Changes in the global value of ecosystem services. Global Environ. Change., 26, 152–158. [CrossRef] [Google Scholar]
  • de Groot R., andHermans L.M., 2009. Broadening the picture: Negotiating payment schemes for water-related environmental services in the Netherlands. Ecol. Econ., 68, 2760–2767. [CrossRef] [Google Scholar]
  • de Groot R., Brander L., Van Der Ploeg S., Costanza R., Bernard F., Braat L., Christie M., Crossman N., Ghermandi A. andHein L., 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv., 1, 50–61. [CrossRef] [Google Scholar]
  • FAO (Food and Agriculture Organization of the United Nations), 2007. The world’s mangroves 1980–2005. FAO Forestry Paper, Report 153, FAO, Rome. [Google Scholar]
  • Fisher M., 2004. Household welfare and forest dependence in Southern Malawi. Environ. Dev. Econ., 9, 135–154. [CrossRef] [Google Scholar]
  • Gadaud J. andRambonilaza M., 2010. Amenity values and payment schemes for free recreation services from non-industrial private forest properties: A French case study. J. Forest Econ., 16, 297–311. [CrossRef] [Google Scholar]
  • Giri C., Ochieng E., Tieszen L.L., Zhu Z., Singh A., Loveland T., Masek J. andDuke N., 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr., 20, 154–159. [CrossRef] [Google Scholar]
  • Hall J., Viney R., Haas M. andLouviere J., 2004. Using stated preference discrete choice modeling to evaluate health care programs. J. Bus. Res., 57, 1026–1032. [CrossRef] [Google Scholar]
  • Kaffashi S., Shamsudjn M., Radam A., Rahjrn K.A., Yacob M., Muda A. andYazid M., 2011. Economic valuation of Shadegan international wetland, Iran: Notes for conservation. Reg. Environ. Chang., 11, 925–934. [CrossRef] [Google Scholar]
  • Kenter J.O., Hyde T., Christie M. andFazey I., 2011. The importance of deliberation in valuing ecosystem services in developing countries – Evidence from the Solomon Islands. Global Environ. Chang., 21, 505–521. [CrossRef] [Google Scholar]
  • Lancaster K.J., 1966. New Approach to Consumer Theory. J. Polit. Econ., 74, 132–157. [CrossRef] [MathSciNet] [Google Scholar]
  • Lee S.Y., Primavera J.H., Dahdouh-Guebas F., McKee K., Bosire J.O., et al., 2014. Ecological role and services of tropical mangrove ecosystems: a reassessment. Global Ecol. Biogeogr., 23, 726–743. [CrossRef] [Google Scholar]
  • Liu X. andWirtz K.W., 2010. Managing coastal area resources by stated choice experiments. Estuar. Coast. Shelf. S., 86, 512–517. [CrossRef] [Google Scholar]
  • MA Millennium Ecosystem Assessment, 2005. Ecosystem and Human Wellbeing: Synthesis, Island Press, Washington DC. [Google Scholar]
  • McConnell K.E. andTseng W.C., 1999. Some preliminary evidence on sampling of alternatives with the random parameters logit. Mar. Resour. Econ., 14, 317–332. [CrossRef] [Google Scholar]
  • McFadden D., 1974. Conditional logit analysis of qualitative choice behaviour. In: Zarembka P. (ed.), Frontiers in Econometrics, Academic Press, New York, 105–142. [Google Scholar]
  • Mitsch W.J. and Gosselink J.G., 2015. Wetlands, 5th edition, John Wiley & Sons, Inc., Hoboken, NJ, 744 p. [Google Scholar]
  • Neinavaz E., Karami M. andDanehkar A., 2011. Investigation of great egret (Casmerodius albus) breeding success in Hara biosphere reserve of Iran. Environ. Monit. Assess., 179, 301–307. [CrossRef] [PubMed] [Google Scholar]
  • O’Garra T., 2012. Economic valuation of a traditional fishing ground on the coral coast in Fiji. Ocean. Coast. Manag., 56, 44–55. [CrossRef] [Google Scholar]
  • Sharzehi G.A. and Jalili P., 2013. Choice Modeling: a new approach to valuation of environmental commodity; case study: ganjnameh, hamedan. Econ. Res., 3, 1–18 (in Persian). [Google Scholar]
  • Valiela I., Bowen J.L. andYork J.K., 2001. Mangrove forests: one of the world’ s threatened major tropical environments. Bioscience, 51, 807–815. [CrossRef] [Google Scholar]
  • Vo Q.T., Kuenzer C., Vo Q.M., Moder F. andOppelt N., 2012. Review of valuation methods for mangrove ecosystem services. Ecol. Indic., 23, 431–446. [CrossRef] [Google Scholar]
  • Walters B.B., Rönnbäck P., Kovacs J.M., Crona B., Hussain S.A., Badola R., Primavera J.H., Barbier E. andDahdouh-Guebas F., 2008. Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat. Bot., 89, 220–236. [CrossRef] [Google Scholar]
  • Zahed M.A., Rouhani F., Mohajeri S., Bateni F. andMohajeri L., 2010. An overview of Iranian mangrove ecosystems, northern part of the Persian Gulf and Oman Sea. Act. Ecol. Sin., 30, 240–244. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.