Issue
Knowl. Manag. Aquat. Ecosyst.
Number 416, 2015
Topical issue on Crayfish
Article Number 25
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2015021
Published online 05 October 2015
  • Bodin N., Le Loc’h F. and Hily C., 2007. Effect of lipid removal on carbon and nitrogen stable isotope ratios in crustacean tissues. J. Exp. Mar. Biol. Ecol., 341, 168–175. [CrossRef] [Google Scholar]
  • Carolan J.V., Mazumder D., Dimovski C., Diocares R. and Twining J., 2012. Biokinetics and discrimination factors for δ13C and δ15N in the omnivorous freshwater crustacean, Cherax destructor. Mar. Freshwater Res., 63, 878–886. [CrossRef] [Google Scholar]
  • Church D.C. and Pond W.G., 1982. Basic animal nutrition and feeding. John Wiley & Sons, New York, USA. [Google Scholar]
  • Cortés-Jacinto E., Villarreal-Colmenares H., Civera-Cerecedo R. and Martinez-Córdova R., 2003. Effect of dietary protein level on growth and survival of juvenile freshwater crayfish Cherax quadricarinatus (Decapoda: Parastacidae). Aquacult. Nutr., 9, 207–213. [CrossRef] [Google Scholar]
  • D’Abramo L.R., Conclin D.E. and Akiyama D.M., (eds.) 1997. Crustacean nutrition. Advances in world aquaculture. Volume 6. The World Aquaculture Society, Baton Rouge, USA. [Google Scholar]
  • Davis D.A. and Robinson E.H. 1986. Estimation of the dietary lipid requirement level of the white crayfish Procambarus acutus acutus. J. World Aquacult. Soc., 17, 37–43. [CrossRef] [Google Scholar]
  • delRio C.M., Wolf N., Carleton S.A. and Gannes L.Z., 2009. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev., 84, 91–111. [CrossRef] [Google Scholar]
  • Ercoli F., Ruokonen T.J., Hämäläinen H. and Jones R.I. 2014. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes? Biol. Inv., 16, 2025–2036. [CrossRef] [Google Scholar]
  • Fantle M.S., Dittel A.I., Scwalm S.M., Epifanio C.E. and Fogel M.L., 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia, 120, 416–426. [CrossRef] [PubMed] [Google Scholar]
  • Fotedar R., 1999. Nutrition of Marron, Cherax tenuimanus (Smith), Under Different Culture Conditions–A Comparative Study. Doctoral Dissertation. Aquatic Science Research Unit, Curtin University, Perth, Western Australia. [Google Scholar]
  • Frazer T., Ross R., Quentin L. and Montoya J., 1997. Turnover of carbon and nitrogen during growth of larval krill, Euphausia superba Dana: a stable isotope approach. J. Exp. Mar. Biol. Ecol., 212, 259–275. [CrossRef] [Google Scholar]
  • Gannes L.Z., O’Brien D.M. and Martinez Del Rio C., 1997. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology, 78, 1271–1276. [CrossRef] [Google Scholar]
  • Grey J., 2006. The use of stable istope analyses in freshwater ecology: current awareness. Pol. J. Ecol., 54, 563–584. [Google Scholar]
  • Gruber C., Kortet R., Vainikka A., Hyvärinen P., Rantala M.J., Pikkarainen A., Jussila J., Makkonen J., Kokko H. and Hirvonen H., 2014. Variation in resistance to the invasive crayfish plague and immune defence in the native noble crayfish. Annal. Zool. Fenn., 51, 371–389. [CrossRef] [Google Scholar]
  • Gu H., Anderson A.J., Mather P.B. and Capra M.F. 1996. Effects of feeding level and starvation on growth and water and protein content in juvenile redclaw crayfish, Cherax quadricarinatus (von Martens). Mar. Freshwater Res., 47, 745–748. [CrossRef] [Google Scholar]
  • Hazlet B., Rubenstein D. and Rittschoff D. 1975 Starvation, energy reserves and aggression in the crayfish Orconectes virilis (Hagen, 1870) (decapoda, Camridae). Crustaceana, 28, 11–16. [CrossRef] [Google Scholar]
  • Hicks B.J., 1997. Food webs in forest and pasture streams in the Waikato region, New Zealand: A study based on analyses of stable isotopes of carbon and nitrogen, and fish gut contents. New Zeal. J. Mar. Fresh., 31, 651–664. [CrossRef] [Google Scholar]
  • Hobson K.A. and Clark R.G., 1992. Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor, 94, 181–188. [CrossRef] [Google Scholar]
  • Holdich, D.M. (2002) Biology of freshwater crayfish. Blackwell Science Ltd. Osney, Mead, Oxford, England. [Google Scholar]
  • Jackson M.C., Jones T., Milligan M., Sheath D., Taylor J., Ellis A., England J. and Grey J., 2014. Niche differentiation among invasive crayfish and their impacts on ecosystem structure and functioning. Freshw. Biol., 59, 1123–1135. [CrossRef] [Google Scholar]
  • Jones P.L. and Obst J.H. 2000. Effects of starvation and subsequent refeeding on the size and nutrient content of the hepatopancreas of Cherax destructor (Decapoda: Parastacidae). J. Crust. Biol., 20, 431– 441. [CrossRef] [EDP Sciences] [Google Scholar]
  • Jussila J., 1997. Physiological responses of Astacid and Parastacid crayfishes (Crustacea: Decapoda) to conditions of intensive culture. Doctoral Dissertation. Faculty of Natural and Environmental Sciences, University of Kuopio, Finland. [Google Scholar]
  • Jussila J. and Mannonen A., 1997. Marron (Cherax tenuimanus) and noble crayfish (Astacus astacus) hepatopancreas energy and its relationship to moisture content. Aquaculture, 149, 157–161. [CrossRef] [Google Scholar]
  • Jussila J., Makkonen J. and Kokko H., 2011. Peracetic acid (PAA) treatment is an effective disinfectant against crayfish plague (Aphanomyces astaci) spores in aquaculture. Aquaculture, 320, 37–42. [CrossRef] [Google Scholar]
  • Jussila J., Makkonen J., Vainikka A., Kortet R. and Kokko H., 2014. Crayfish plague dilemma: how to be a corteous killer. Boreal Environ. Res., 19, 235–244. [Google Scholar]
  • Kankaala P., Taipale S., Li L. and Jones R.I., 2010. Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquat. Ecol., 44, 781–795. [CrossRef] [Google Scholar]
  • Layman C.A., Arrington D.A., Montana C.G. and Post D.M., 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88, 42–48. [CrossRef] [PubMed] [Google Scholar]
  • Layman C.A., Araujo M.S., Boucek R., Hammerschlag-Peyer C.M., Harrison E., Jud Z.R., Matich P., Rosenblatt A.E., Vaudo J.J., Yeager L.A., Post D.M. and Bearhop S., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev., 87, 545–562. [CrossRef] [Google Scholar]
  • López-López S., Nolasco H., Villarreal-Colmenares H. and Civera-Cerecedo R., 2005. Digestive enzyme response to supplemental ingredients in practical diets for juvenile freshwater crayfish Cherax quadricarinatus. Aquacult. Nutr., 11, 79–85. [CrossRef] [Google Scholar]
  • Makkonen J., 2013. The crayfish plague pathogen Aphanomyces astaci – genetic diversity and adaptation to the host species. Doctoral Dissertation. University of Eastern Finland, Faculty of Forestry and Natural Sciences, Kuopio, Finland. [Google Scholar]
  • Olsson K., Stenroth P., Nyström P. and Granéli W., 2009. Invasions and niche width: does niche width of an introduced crayfish differ from a native crayfish? Freshw. Biol., 54, 1731–1740. [CrossRef] [Google Scholar]
  • Parkyn S.M., Collier K.J. and Hicks B.J., 2001. New Zealand stream crayfish: functional omnivores but trophic predators? Freshw. Biol., 46, 641–652. [CrossRef] [Google Scholar]
  • Peterson B.J. and Fry B., 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18, 292–320. [CrossRef] [EDP Sciences] [Google Scholar]
  • Post D.M., 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703–718. [CrossRef] [Google Scholar]
  • Roth B.M., Hein C.L. and Van der Zanden M.J. 2006. Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes rusticus) in lake littoral zones. Can. J. Fish. Aquat. Sci., 63, 335–344. [CrossRef] [Google Scholar]
  • Rudnick D. and Resh V. 2005. Stable isotopes, mesocosms and gut content analysis demonstrate trophic differences in two invasive decapod crustacea. Freshw. Biol., 50, 1323–1336. [CrossRef] [Google Scholar]
  • Ruokonen T.J., Kiljunen M., Karjalainen J. and Hämäläinen H., 2012. Invasive crayfish increase habitat connectivity in large boreal lakes. Knowl. Manag. Aquat. Ecosyst., 407, 08. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sánchez-Paz A., García-Carreño F., Muhlia-Almazán A., Peregrino-Uriarte A.B., Hernández-López J. and Yepiz-Plascencia G., 2006. Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochem. Molec., 36, 241–249. [CrossRef] [Google Scholar]
  • Saoud I.P., Garza De Yta A. and Ghanawi J., 2012. A review of nutritional biology and dietary requirements of red claw crayfish Cherax quadricarinatus (von Martens 1868). Aquacult. Nutr., 18, 349–368. [CrossRef] [Google Scholar]
  • Schmidt K., Atkinson A., Stuebing D., McClelland J., Montoya J. and Voss M. 2003. Trophic relationships among southern ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol. Oceanography, 48, 277–289. [CrossRef] [Google Scholar]
  • Souty-Grosset C., Holdich D.M., Noël P.Y., Reynolds J.D. and Haffner P. (eds.), 2006. Atlas of crayfish in Europe. Muséum national d’Historie naturelle, Paris, France. [Google Scholar]
  • Stenroth P., Holmqvist N., Nyström P., Berglund O., Larsson P. and Granéli W., 2006. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci., 63, 821–831. [CrossRef] [Google Scholar]
  • Suring E. and Wing S.R., 2009. Isotopic turnover rate and fractionation in multiple tissues of red rock lobster (Jasus edwardsii) and blue cod (Parapercis colias): Consequences for ecological studies. J. Exp. Mar. Biol. Ecol., 370, 56–63. [CrossRef] [Google Scholar]
  • Syväranta J., Högmander P., Keskinen T., Karjalainen J. and Jones R.I., 2011. Altered energy flow pathways in a lake ecosystem following manipulation of fish community structure. Aquatic Sci., 73, 79–89. [CrossRef] [Google Scholar]
  • Vainikka A., Rantala M.J., Niemelä P., Hirvonen H. and Kortet R., 2011. Boldness as a consistent personality trait in the noble crayfish, Astacus astacus. Acta Ethol., 14, 17–25. [CrossRef] [Google Scholar]
  • Van der Zanden M.J., Casselman J.M. and Rasmussen J.B., 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401, 464–467. [CrossRef] [Google Scholar]
  • Van der Zanden M.J., Vadeboncoeur Y., Diebel M.W. and Jeppesen E., 2005. Primary consumer stable nitrogen isotopes as indicators of nutrient source. Envir. Sci. Tech., 39, 7509–7515. [CrossRef] [PubMed] [Google Scholar]
  • Yokoyama H., Tamaki A., Harada K., Shimoda K., Koyama K. and Ishihi Y., 2005. Variability of diet-tissue isotopic fractionation in estuarine macrobenthos. Mar. Ecol. Prog. Ser., 296, 115–128. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.