Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 416, 2015
Article Number 15
Number of page(s) 15
Published online 01 July 2015
  • AFNOR – Association Française de Normalisation, 2003. Détermination de la toxicité des sédiments d’eaux douces vis-à-vis de Hyalella azteca. Partie I. Sédiments naturels. XPT90-338-1, Rapport Technique. [Google Scholar]
  • ASTM – American Society of Testing and Materials, 1990. Standard guide for conducting sediment toxicity tests with freshwater invertebrates. ASTM Standard E1383-90, Philadelphia, PA, USA. [Google Scholar]
  • ASTM – American Society of Testing and Materials, 2010. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. ASTM Standard E1706-05, Philadelphia, PA, USA. [Google Scholar]
  • Becker D.S., Rose C.D. and Bigham G.N., 1995. Comparison of the 10-day freshwater sediment toxicity test using Hyalella azteca and Chironomus tentans. Environ. Toxicol. Chem., 14, 2089–2094. [CrossRef] [Google Scholar]
  • Blaise C., 1991. Microbiotests in aquatic ecotoxicology: characteristics, utility and prospects. Environ. Toxic. Water. Qual., 6, 145–155. [CrossRef] [Google Scholar]
  • Blaise C., Gagné F., Chèvre N., Harwood M., Lee K., Lappalainen J., Chial B., Persoone G. and Doe K., 2004. Toxicity assessment of oil-contaminated freshwater sediments. Environ. Toxicol., 19, 267–273. [CrossRef] [PubMed] [Google Scholar]
  • Borgmann U. and Munawar M., 1989. A new standardized sediment bioassay protocol using the amphipod Hyalella azteca (Saussure). Hydrobiologia, 188/189, 425–531. [CrossRef] [Google Scholar]
  • Borgmann U., Ralph K.M. and Norwood W.P., 1989. Toxicity test procedures for Hyalella azteca, and chronic toxicity of cadmium and pentachlorophenol to H. azteca, Gammarus fasciatus and Daphnia magna. Arch. Environ. Con. Tox., 18, 756–764. [CrossRef] [Google Scholar]
  • Borgmann U., Couillard Y., Doyle P. and Dixon D.G., 2005. Toxicity to sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environ. Toxicol. Chem., 24, 641–682. [CrossRef] [PubMed] [Google Scholar]
  • Burton G.A., 1991. Annual review. Assessing the toxicity of freshwater sediments. Environ. Toxicol. Chem., 10, 1585-1627. [CrossRef] [Google Scholar]
  • Burton G.A., Norberg-King T.J., Ingersoll C.G., Benoit D.A., Ankley G.T., Winger P.V., Kubitz J., Lazorchak J.M., Smith M.E., Greer E., Dwyer F.J., Call D.J., Day K.E., Kennedy P. and Stinson M., 1996. Interlaboratory study of precision: Hyalella azteca and Chironomus tentans freshwater sediment toxicity assays. Environ. Toxicol. Chem., 15, 1335–1343. [CrossRef] [Google Scholar]
  • Chial B. and Persoone G., 2002a. Cyst-based toxicity tests XII – Development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens: selection of test parameters. Environ. Toxicol., 17, 520–527. [CrossRef] [PubMed] [Google Scholar]
  • Chial B. and Persoone G., 2002b. Cyst-based toxicity tests XIII – Development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens: methodology and precision. Environ. Toxicol., 17, 528–532. [CrossRef] [PubMed] [Google Scholar]
  • Chial B. and Persoone G., 2002c. Cyst-based toxicity tests XIV – Application of the ostracod solid-phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium). Environ. Toxicol., 17, 533–537. [CrossRef] [PubMed] [Google Scholar]
  • Chial B., Persoone G. and Blaise C., 2003a. Cyst-based toxicity tests XVI – Sensitivity comparison of the solid phase Heterocypris incongruens microbiotest with the Hyalella azteca and Chironomus riparius contact assays on freshwater sediments from Peninsula harbor (Ontario, Canada). Chemosphere, 52, 95–101. [CrossRef] [PubMed] [Google Scholar]
  • Chial B., Persoone G. and Blaise C., 2003b. Cyst-based toxicity tests XVIII. Application of the Ostracodtoxkit microbiotest in a bioremediation project of oil-contaminated sediments: sensitivity comparison with the Hyalella azteca solid-phase assay. Environ. Toxicol., 18, 279–283. [CrossRef] [PubMed] [Google Scholar]
  • Coccia A.M., Gucci P.M.B., Lacchetti I., Beccaloni E., Paradiso R., Beccaloni M. and Musmeci L., 2009. Hydrocarbon contaminated soil treated by bioremediation technology: microbiological and toxicological preliminary findings. Environ. Biotechnol., 5, 61–72. [Google Scholar]
  • de Deckere E., De Cooman W., Florus M. and Devroede-Vanderlinden M.P., 2000. Handbook for the characterization of sediments of Flemisch watercourses according to the Triad. (Handboek voor de karakterisatie van de bodems van de Vlaamse waterlopen volgens de Triade). Ministry of the Flemish Community in collaboration with the Flemish Environmental Agency, 1–112. [Google Scholar]
  • Dirven-van Breemen E.M., Mesman M., Rutgers M., Jensen J., Sorokin N., Bierkens J., Ter Laak T., Erlacher L. and Bogolte T., 2006. The case study Skagen, Denmark. In: Jensen J. and Mesman M. (eds.). Ecological risk assessment of contaminated land. Decision support for site specific investigations. RIVM Report 711701047, Chap. 7. [Google Scholar]
  • Drobniewska A., Sumorok B., Nalecz-Jawecki G. and Sawicki J., 2007. Toxicity assessment of sediments and soil from rivers and floodplains in central Poland using a battery of microbiotests – A case study. Fresen. Environ. Bull., 16, 109–112. [Google Scholar]
  • Environment Canada, 1997. Biological test method: test for survival and growth in sediment using the freshwater amphipod Hyalella azteca, Report EPS 1/RM/33. Environmental Protection Service, Ottawa, Canada. [Google Scholar]
  • Environment Canada, 2013. Biological test method: test for survival and growth in sediment using the freshwater amphipod Hyalella azteca. Second Edition, Report EPS 1/RM/33. Science and Technology Branch, Ottawa, Canada. [Google Scholar]
  • Fryer G., 1997. The horse-trough ostracod Heterocypris incongruens. Naturalist, 122, 121–135. [Google Scholar]
  • García-Lorenzo M.L., Martínez-Sánchez M.J., Pérez-Sirvent C. and Molina J., 2009. Ecotoxicological evaluation for the screening of areas polluted by mining activities. Ecotoxicology, 18, 1077–1086. [CrossRef] [PubMed] [Google Scholar]
  • Gonçalves J., Moreira-Santos M., Lopes I. and Ribeiro R., 2012. Efficacy of recent remediation measures in a protected coastal lagoon (Paramos, Portugal): toxicity of surface versus subsurface sediments, SETAC Europe 22nd Annual Annual meeting, Berlin, Germany (Abstract and poster on [Google Scholar]
  • Hémart M. and Marneffe Y., 2013. Étude sur la qualité des sédiments des cours d’eau wallons – Réseau écotoxicité. Synthèse des campagnes 201 à 2012, Rapport ISSEP No. 4000, 1–50. [Google Scholar]
  • Hémart M., Marneffe Y., Pirotte R., Wrona V., Chalon C., Naport P., Rollin V., Corin C. and Claessens A., 2012. Bioassays in sediment assessment for investigative monitoring in the context of the WFD. SETAC Europe 22nd Annual meeting, Berlin, Germany (Abstract and poster on [Google Scholar]
  • Huerta Buitrago B., Ferrer Muñoz P., Ribé V., Larsson M., Engwall M., Wojciechowska E. and Waara S., 2013. Hazard assessment of sediments from a wetland system for treatment of landfill leachate using bioassays. Ecotox. Environ. Safe., 97, 255–262. [CrossRef] [Google Scholar]
  • Ingersoll C., Ankley G.T., Benoit D.A., Brunson E.L., Burton G.A., Dwyer F.J., Hoke R.A., Landrum P.F., Norberg-King T.J. and Winger P.V., 1995. Toxicity and biocaccumulation of sediment-associated contaminants using freshwater invertebrates. A review of methods and applications. Environ. Toxicol. Chem., 14, 1885–1894. [CrossRef] [Google Scholar]
  • International Joint Commission (IJC), 1988. Procedures for the Assessment of Contaminated Sediment problem in the Great Lakes. IJC. Windsor, Ontario, Canada. [Google Scholar]
  • ISO-International Standardization Organization 14371, 2012. Water Quality – Determination of fresh water sediment toxicity to Heterocypris incongruens (Crustacea, Ostracoda). [Google Scholar]
  • ISO-International Standardization Organization 16303, 2013. Water Quality – Determination of toxicity of fresh water sediments using Hyalella azteca. [Google Scholar]
  • Janssen C.R. and Persoone G., 2011. International interlaboratory comparison on the subchronic toxicity test with the freshwater ostracod crustacean Heterocypris incongruens. Report in, section “Publications and Reports”, 1–16. [Google Scholar]
  • Khanal R., Furumai H. and Nakajima F., 2014. Toxicity assessment of size-fractionated urban road dust using ostracod Heterocypris incongruens direct contact test. J. Hazard. Mater., 264, 53–64. [CrossRef] [PubMed] [Google Scholar]
  • Kudlak B., Wolska L. and Namiesnik J., 2011. Determination of EC50 toxicity data of selected heavy metals toward Heterocypris incongruens and their comparison to “direct-contact” and microbiotests. Environ. Monit. Assess., 174, 509–516. [CrossRef] [PubMed] [Google Scholar]
  • Kwan A., 2004. Ecotoxicological evaluation of polluted sediments. Comparative study of the Ostracodtoxkit and an improved Ostracodtoxkit with the conventional Hyalella azteca test. Flemish Environmental Agency (Internal Report, in Dutch, not published). [Google Scholar]
  • Latif M. and Licek E., 2004. Toxicity assessment of waste waters, river waters and sediments in Austria using cost- effective microbiotests. Environ. Toxicol., 19, 302–309. [CrossRef] [PubMed] [Google Scholar]
  • Mankiewicz-Boczek J., Nalecz-Jawecki G., Drobniewska A., Kaza M., Sumorok B., Izydorczyk K., Zalewski M. and Sawicki J., 2008. Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotox. Environ. Safe., 71, 830–836. [CrossRef] [PubMed] [Google Scholar]
  • Mason C.F., 2002. Biology of Freshwater Pollution. Pearson Education Ltd, Harlow, England. [Google Scholar]
  • Milani D., Day K.E., McLeay D.J. and Kirby R.S., 1996. Recent intra- and interlaboratory studies related to the development and standardization of Environment Canada’s biological test methods for measuring sediment toxicity using freshwater amphipoda (Hyalella azteca) or midge larvae (Chironomus riparius). Technical Report prepared by National Water Research Institute, Burlington, ON, for the Method Development and Application Section, Environment Canada, Ottawa, Canada. [Google Scholar]
  • Nalecz-Jawecki G., Olszewska M. and Sawicki J., 2009. Effects of the parasiticides avermectins on the ostracod Heterocypris incongruens, 14th International Symposium on toxicity assessment, Metz, France. Abstract and poster on Section Publications. [Google Scholar]
  • Nalecz-Jawecki G., Szczesny L., Adomas B., Piotrowicz-Cieslak A.I. and Sawicki J., 2011. Evaluation of toxicity of anthelmintic pharmaceuticals with culture-free microbiotests. Fresen. Environ. Bull., 20, 1093–1096. [Google Scholar]
  • Nebeker A.V., Cairns M.A., Gakstatter J.H., Malueg K.W., Schuytema G.S. and Krawczyk D.F., 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environ. Toxicol. Chem., 3, 617–630. [CrossRef] [Google Scholar]
  • Ostracodtoxkit, 2004. Direct contact toxicity test for freshwater sediments. Standard Operational Procedure. MicroBioTests Inc, Mariakerke, Belgium. [Google Scholar]
  • Palma P., Ledo L., Soares S., Barbosa I.R. and Alvarenga P., 2014. Integrated environmental assessment of freshwater sediments: a chemical and ecotoxicological approach at the Alqueva reservoir. Environ. Geochem. Hlth, 36, 209–223. [CrossRef] [Google Scholar]
  • Persoone G., 1991. Cyst-based toxicity tests I – A promising new tool for rapid and cost-effective toxicity screening of chemicals and effluents. Z. Angew. Zool., 78, 235–241. [Google Scholar]
  • Phipps G.L., Mattson V.R. and Ankley G.T., 1995. The relative sensitivity of three freshwater benthic macroinvertebrates to ten contaminants. Arch. Environ. Con. Tox., 28, 281–286. [CrossRef] [Google Scholar]
  • Ruiz F., Abad M., Bodergat A.M., Carbonel P., Rodriguez-Lazaro J., Gonzalez-Regalado M.L., Toscano A., Garcia E.X. and Prenda J., 2013. Freshwater ostracoda as environmental tracers. Int. J. Environ. Sci. Technol., 10, 1115–1128. [CrossRef] [Google Scholar]
  • Sevilla J.B, Nakajima F. and Kasuga I., 2014. Dose-response relationship of solid-phase metals to benthic ostracod Heterocypris incongruens, 13th International Conference on Urban Drainage, Sawarak, Malaysia, 1–8. [Google Scholar]
  • Sheahan D. and Fisher T., 2012. Review and comparison of available testing approaches and protocols for testing effects of chemicals on sediment-dwelling organisms with potential applicability to pesticides. CEFAS External Scientific Report EN-337. [Google Scholar]
  • Silva E., Batista S., Caetano L., Cerejeira M.J., Chaves M. and Jacobsen S.E., 2011. Integrated approach for the quality assessment of freshwater resources in a vineyard area (South Portugal). Environ. Monit. Assess., 176, 331–341. [CrossRef] [PubMed] [Google Scholar]
  • Steliga T., 2011. The use of biotests in estimation of weathered drilling waste bioremediation. Arch. Environ. Prot., 37, 61–79. [Google Scholar]
  • USEPA – Environmental Protection Agency, 1994. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, EPA 600/R-94/024. Office of Research and Development, Duluth, MN, USA. [Google Scholar]
  • USEPA – Environmental Protection Agency, 2000. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. 2nd edition, EPA 600/R-99/064. Office of Research and Development, Duluth, MN, USA. [Google Scholar]
  • Wang F., Leung A.O., Wu S.C., Yang M.S. and Wong M.H., 2009. Chemical and ecotoxicological analyses of sediments and elutriates of contaminated rivers due to e-waste recycling activities using a diverse battery of bioassays. Environ. Pollut., 157, 2082–2090. [CrossRef] [PubMed] [Google Scholar]
  • Watanabe H., Nakajima F., Kasuga I. and Furumai H., 2008. Toxicity characterization of urban river sediments using bioassay with ostracod. J. Jpn Soc. Water Environ., 31, 671–676. [CrossRef] [Google Scholar]
  • Watanabe H., Nakajima F., Kasuga I. and Furumai H., 2013. Application of whole sediment toxicity identification evaluation procedures to road dust using a benthic ostracod Heterocypris incongruens. Ecotox. Environ. Safe., 89, 245–251. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.