Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 416, 2015
Article Number 17
Number of page(s) 20
Published online 06 July 2015
  • Allan J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst., 35, 257–284. [Google Scholar]
  • Al-Shami S.A., Md Rawi C.S., Ahmad A.H., Abdul Hamid S. and Mohd Nor S.A., 2011. Influence of agricultural, industrial, and anthropogenic stresses on the distribution and diversity of macroinvertebrates in Juru River Basin, Penang, Malaysia. Ecotoxicol. Environ. Safety, 74, 1195–1202. [Google Scholar]
  • Barbour M.T., Gerritsen J., Griffith G.E., Frydenborg R., McCarron E., White J.S. and Bastian M.L., 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. J. N. Am. Benthol. Soc., 15, 185–211. [Google Scholar]
  • Beauger A., Lair N., Reyes-Marchant P. and Peiry J.L., 2006. The distribution of macro inverte- brate assemblages in a reach of the River Allier (France), in relation to riverbed characteristics. Hydrobiologia, 571, 63–76. [CrossRef] [Google Scholar]
  • Beisel J.N., Usseglio-Polatera P., Thomas S. and Moreteau J.C., 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia, 389, 73−88 [CrossRef] [Google Scholar]
  • Bieger L., Carvalho A.B.P., Strieder M.N., Maltchik L. and Stenert C., 2010. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question. Braz. J. Biol., 70, 1207–1215. [CrossRef] [PubMed] [Google Scholar]
  • Bowman M.F. and Bailey R.C., 1997. Does taxonomic resolution affect the multivariate description of the structure of freshwater benthic macroinvertebrate communities? Can. J. Fish. Aquat. Sci., 54, 1802–1807. [CrossRef] [Google Scholar]
  • Boyero L. and Bailey R.C., 2001. Organization of macroinvertebrate communities at a hierarchy of spatial scales in a tropical stream. Hydrobiologia, 464, 219–225. [CrossRef] [Google Scholar]
  • Brown L.R. and May J.T., 2000. Macroinvertebrate assemblages on woody debris and their relations with environmental variables in the lower Sacramento and San Joaquin River drainages, California. Environ. Monit. Assess., 64, 311–329. [CrossRef] [Google Scholar]
  • Bucker A., Sondermann M., Frede H.G. and Breuer L., 2010. The influence of land-use on macroinvertebrate communities in montane tropical streams a case study from Ecuador. Fund. Appl. Limnol., 177, 267–282. [CrossRef] [Google Scholar]
  • Buss D.F., Baptista D.F., Nessimian J.L. and Egler M., 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia, 518, 179–188. [CrossRef] [Google Scholar]
  • Chambers P.A., Mcgoldrick D.J., Brua R.B., Vis C., Culp J.M. and Benoy G.A., 2012. Development of environmental thresholds for nitrogen and phosphorus in streams. J. Environ. Qual., 41, 7–20. [CrossRef] [PubMed] [Google Scholar]
  • Chen Q.W., Yang Q.R., Li R.N. and Ma J.F., 2012. Spring micro-distribution of macroinvertebrate in relation to hydro-environmental factors in the Lijiang River, China. J. Hydro-Environ. Res., 7, 103−112. [CrossRef] [Google Scholar]
  • Chessman B., Williams S. and Besley C., 2007. Bioassessment of streams with macroinvertebrates: effect of sampled habitat and taxonomic resolution. J. N. Am. Benthol. Soc., 26, 546–565. [CrossRef] [Google Scholar]
  • Chessman B.C., Thurtell L.A. and Royal, M.J., 2006. Bioassessment in a harsh environment: a comparison of macroinvertebrate assemblages at reference and assessment sites in an Australian inland river system. Environ. Monit. Assess., 119, 303–330. [CrossRef] [PubMed] [Google Scholar]
  • Clarke K.R. and Warwick R.M. (ed.), 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. PRIMER-E Ltd., Plymouth, 172 p. [Google Scholar]
  • Duan X.H., Wang Z.Y. and Xu M.Z., 2010. Benthic Macroinvertebrate and Application in the Assessment of Stream Ecology, Tsinghua University Press, Beijing, 168 p. (in Chinese). [Google Scholar]
  • Dufrêne M. and Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366. [Google Scholar]
  • Friberg N., Bonada N., Bradley D.C., Dunbar M.J., Edwards F.K., Grey J.Richard B.H., Alan G.H., Nicolas L., Mark T. and Guy W., 2011. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res., 44, 1–68. [Google Scholar]
  • Gabriels W., Goethals P.L.M., Dedecker A.P., Lek S., De Pauw N., 2007. Analysis of macrobenthic communities in Flanders, Belgium, using a stepwise input variable selection procedure with artificial neural networks. Aquat. Ecol., 41, 427–441. [CrossRef] [Google Scholar]
  • Gallacher D., 2001. The application of rapid bioassessment techniques based on benthic macroinvertebrates in East Asian rivers (a review). Int. Vereinigung Theoretische Angewandte Limnol. Verhandlungen, 27, 3503–3509. [Google Scholar]
  • Genito D., Gburek W.J. and Sharpley A.N., 2002. Response of stream macroinvertebrates to agricultural land cover in a small watershed. J. Freshwater Ecol., 17, 109–119. [CrossRef] [Google Scholar]
  • Hilsenhoff W.L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Am. Benthol. Soc., 7, 65–68. [CrossRef] [Google Scholar]
  • Ho K.C., Chow Y.L. and Yau J.T.S., 2003. Chemical and microbiological qualities of The East River (Dongjiang) water, with particular reference to drinking water supply in Hong Kong. Chemosphere, 52, 1441–1450. [CrossRef] [PubMed] [Google Scholar]
  • Jiang X.M., Xiong J., Qiu J.W., Wu J.M., Wang J.W. and Xie Z.C., 2010. Structure of macroinvertebrate communities in relation to environmental variables in a subtropical Asian River system. Int. Rev. Hydrobiol., 95, 42–57. [CrossRef] [Google Scholar]
  • Jiang Y., Ding Z.Y., Peng Q.Z., Liao J.Y. and Lv L.L., 2012. Spatial Distribution and Corresponding Factors of Heavy Metals Concentrations in the Dongjiang River Basin, Southeast China. Res. J. Environ. Earth. Sci., 4, 448–459. [Google Scholar]
  • John G.R., 2004. The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiologia, 524, 115–124. [CrossRef] [Google Scholar]
  • Johnson R.K., Eriksson L. and Wiederholm T., 1992. Ordination of profundal zoobenthos along a trace metal pollution gradient in northern Sweden. Water Air Soil Pollut., 65, 339–351. [CrossRef] [Google Scholar]
  • Kaller M.D. and Kelso W.E., 2007. Association of macroinvertebrate assemblages with dissolved oxygen concentration and wood surface area in selected subtropical streams of the southeastern USA. Aquat. Ecol., 41, 95–110. [CrossRef] [Google Scholar]
  • Kong W.J., Meng W., Zhang Y., Gippel C. and Qu X.D., 2013. A freshwater ecoregion delineation approach based on freshwater macroinvertebrate community features and spatial environmenttal data in Taizi River Basin, northeastern China. Ecol. Res., 28, 581–592. [CrossRef] [Google Scholar]
  • Lee J., Wang Z., Thoe W. and Cheng D., 2007. Integrated physical and ecological management of the East River. Water Sci. Technol., 7, 81–91. [Google Scholar]
  • Lenat D.R., 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Am. Benthol. Soc., 7, 222–233. [Google Scholar]
  • Li L., Yang Y., Min Q.Y. and Ran T., 2013. Macrobenthic community structure features and bio-assessment of water quality in Dongjiang River. Ecol. Sci., 32, 313–317 (in Chinese with English abstract). [Google Scholar]
  • Lie Z.X., 1988. Investigation of macroinvertebrates in Dongjiang River. Freshwater Fisheries, 2, 28–34 (in Chinese). [Google Scholar]
  • Liu D.D., Chen X.H., Lian Y.Q. and Lou Z.H., 2010. Impacts of climate change and human activities on surface runoff in the Dongjiang River basin of China. Hydrol. Process, 24, 1487–1495. [CrossRef] [Google Scholar]
  • Liu Y., Vermaat J.E., Ruyter and Kruigf, 2003. The correlation between macrofauna distribution and nitrogen as well as phosphors in the pearl river and the Liuxi River. Acta Scientiarum Naturalium Universities Sunyatseni, 41, 95–99 (in Chinese with English abstract). [Google Scholar]
  • Liu Y.Y., Zhang W.Z., Wang Y.X. and Wang E.Y., 1979. Economic Fauna of China: Freshwater Mollusca. Science Press, Beijing, 134 p. (in Chinese). [Google Scholar]
  • Loayza-Muro R.A., Duivenvoorden J.F., Kraak M.H. and Admiraal W., 2013. Metal leaching, acidity and altitude confine benthic macroinvertebrate community composition in Andean streams. Environ. Toxicol. Chem., 33, 404–411. [CrossRef] [PubMed] [Google Scholar]
  • Margalef D.R., 1957. Information theory in Ecology. Gen. Systems, 3, 36–71. [Google Scholar]
  • Martin P.M. and Arunachalam M., 2000. Abundance and diversity of macroinvertebrates and fish in the Tamiraparani river, South India. Hydrobiologia, 430, 59–75. [CrossRef] [Google Scholar]
  • Maul J., Farris J., Milam C., Cooper C., Testa S. and Feldman D., 2004. The influence of stream habitat and water quality on macroinvertebrate communities in degraded streams of northwest Mississippi. Hydrobiologia, 518, 79–94. [CrossRef] [Google Scholar]
  • McCormick P.V., Shuford III R.B. and Rawlik P.S., 2004. Changes in macroinvertebrate community structure and function along a phosphorus gradient in the Florida Everglades. Hydrobiologia, 529, 113−132. [CrossRef] [Google Scholar]
  • Meng W., Zhang N., Zhang Y. and Zheng B.H., 2009. Integrated assessment of river health based on water quality, aquatic life and physical habitat. J. Environ. Sci., 21, 1017–1027. [CrossRef] [Google Scholar]
  • Michael M.W. and David J.J., 1984. Associations among Chironomidae and sandy substrates in nearshore Lake Michigan. Can. J. Fisheries Aquat. Sci., 41, 174–179. [CrossRef] [Google Scholar]
  • Miserendino M.L. and Masi C.I., 2010. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic., 10, 311–319. [CrossRef] [Google Scholar]
  • Miserendino M.L. and Pizzolon L.A., 2004. Interactive effects of basin features and land-use change on macroinvertebrate communities of headwater streams in the Patagonian Andes. River Res. Appl., 20, 967–983. [CrossRef] [Google Scholar]
  • Morse J.C., Yang L.F. and Tian L.X., 1994. Aquatic insects of China useful for monitoring water quality, Hohai University Press, Nanjing, 570 p. [Google Scholar]
  • Morse J.C., Bae Y.J., Munkhjargal G., Sangpradub N., Tanida K., Vshivkova T.S.Wang B.X., Li L.F. and Yule C.M., 2007. Freshwater biomonitoring with macroinvertebrates in East Asia. Front. Ecol. Environ., 5, 33–42. [Google Scholar]
  • Neff M.R. and Jackson D.A., 2011. Effects of broad-scale geological changes on patterns in macro- invertebrate assemblages. J. N. Am. Benthol. Soc., 30, 459–473. [CrossRef] [Google Scholar]
  • Olsgard F., Somerfield P.J. and Carr M.R., 1998. Relationships between taxonomic resolution, macrobenthic community patterns and disturbance. Mar. Ecol. Prog. Ser., 172, 25–36. [CrossRef] [Google Scholar]
  • Pan B.Z., Wang Z.Y., Li Z.W., Yu G.A., Xu M.Z., Zhao, N. and Gary B., 2013. An exploratory analysis of benthic macroinvertebrates as indicators of the ecological status of the Upper Yellow and Yangtze Rivers. J. Geogr. Sci., 23, 871–882. [CrossRef] [Google Scholar]
  • Paul M.J. and Meyer J.L., 2001. Streams in the urban landscape. Annu. Rev. Ecol. Evol. Syst., 32, 333−365. [CrossRef] [Google Scholar]
  • Qu X.D., Zhang Y., Ma S.Q., Zhao R. and Meng W., 2013. Spatial distribution characteristics of macroinvertebrate communities in Taizi River basin. Res. Environ. Sci., 26, 509–515 (in Chinese with English abstract). [Google Scholar]
  • Roy A., Rosemond A., Paul M., Leigh D. and Wallace J., 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, USA). Freshwater Biol., 48, 329–346. [CrossRef] [Google Scholar]
  • Shannon C.E., 1948. A mathematical theory of communication. Bell System Technical Journal, 27, 379−423. [CrossRef] [MathSciNet] [Google Scholar]
  • Smith M., Kay W., Edward D., Papas P., Richardson K.S.J., Simpson J., Pinder A.M., Cale D.J., Horwitz P.H. J., Davis J.A., Yung F.H., Norris R.H. and Halse S.A., 1999. AusRivAS: using macroinvertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biol., 41, 269–282. [CrossRef] [Google Scholar]
  • Sponseller R.A., Benfield E.F. and Valett H.M., 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biol., 46, 1409–1424. [CrossRef] [Google Scholar]
  • Stenert C., Bacca R.C., Mostardeiro C.C. and Maltchik L., 2008. Environmental predictors of macroinvertebrate communities in coastal wetlands of southern Brazil. Mar. Freshwater Res., 59, 540–548. [CrossRef] [Google Scholar]
  • Strahler A.N., 1957. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union, 38, 913–920. [Google Scholar]
  • ter Braak C.J.F. and Šmilauer P., 2002. CANOCO, Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York, 500 p. [Google Scholar]
  • Thorne R. and Williams P., 1997. The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshwater Biol., 37, 671–686. [CrossRef] [Google Scholar]
  • Thorp J H and Covich A P. (ed.), 2001. Ecology and classification of North American freshwater invertebrates. Academic Press, New York, 1056 p. [Google Scholar]
  • Vermonden K., Brodersen K., Jacobsen D., van Kleef H., van der Velde G. and Leuven R., 2011. The influence of environmental factors and dredging on chironomid larval diversity in urban drainage systems in polders strongly influenced by seepage from large rivers. J .N. Am. Benthol. Soc., 30, 1074–1092. [CrossRef] [Google Scholar]
  • Wang B., Liu Q.R., Zhou Y.L., Xiong X. and Jiang Y., 2011. The community structure of zoobenthos and bioassessment of water quality of the Dongjiang River. J. Hydro-Ecol., 5, 43–49 (in Chinese with English abstract). [Google Scholar]
  • Wang H.Z., 2002. Studies on taxonomy, distribution and ecology of microdrile Oligochaetes of China, with descriptions of two new species from the vicinity of the Great Wall Station of China, Antarctica. Higher Education Press, Beijing, 228 p. (in Chinese). [Google Scholar]
  • Wang Z.Y., Cheng D.S., Duan X.H. and Li X.W., 2007. Assessment of ecological system in East River and corresponding ecological restoration strategies. J. Hydraulic Engineering, 38, 1228–1235 (in Chinese with English abstract). [Google Scholar]
  • Water Framework Directive-United Kingdom Advisory Group (WFD-UKTAG)., 2008. River assessment methods benthic invertebrate fauna, river invertebrate classification tool (RICT). Doi: 978-1-906934-07-1. [Google Scholar]
  • Xu M.Z., Wang Z.Y., Duan X.H. and Pan B.Z., 2013. Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia, 729, 247–259. [Google Scholar]
  • Yan Z.G., Meng W., Liu Z.T. and Yu R.Z., 2011. Development of freshwater aquatic life criteria for amonia in China. Environ. Sci., 32, 1564–1570 (in Chinese with English Abstract). [Google Scholar]
  • Zhang S., Lu X.X., Higgitt D.L., Chen C.T.A., Han J. and Sun H., 2008. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China. Global Planet Change, 60, 365–380. [CrossRef] [Google Scholar]
  • Zhang Y., Dudgeon D., Cheng D., Thoe W., Fok L., Wang, Z. and Lee J H.W., 2010. Impacts of land use and water quality on macroinvertebrate communities in the Pearl River drainage basin, China. Hydrobiologia, 652, 71–88. [Google Scholar]
  • Zhou T., Wu J.G. and Peng S.L., 2012. Assessing the effects of landscape pattern on river water quality at multiple scales: A case study of the Dongjiang River watershed, China. Ecol. Indic., 23, 166–175. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.