Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 416, 2015
Article Number 18
Number of page(s) 12
DOI https://doi.org/10.1051/kmae/2015014
Published online 03 August 2015
  • Akcil A. and Koldas S., 2006. Acid mine drainage (AMD): causes, treatment and case studies. J. Clean. Prod., 14, 1139–1145. [Google Scholar]
  • Alvial I.E., Tapia D.H., Castro M.J., Duran B.C. and Verdugo C.A., 2012. Analysis of benthic macroinvertebrates and biotic indices to evaluate water quality in rivers impacted by mining activities in northern Chile. Knowl. Manag. Aquat. Ecosyst., 407, 01. [CrossRef] [EDP Sciences] [Google Scholar]
  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th edition. American Public Health Association, Washington, D.C. [Google Scholar]
  • Bain M.B., Harig A.L., Louchs D.P., Goforth R.R. and Mills K.E., 2000. Aquatic ecosystem protection and restoration: advances in methods for assessment and evaluation. Environ. Sci. Policy, 3, S89–S98. [CrossRef] [Google Scholar]
  • Bernhardt E.S. and Palmer M.A., 2011. River restoration: the fuzzy logic of repairing reaches to reverse catchment scale degradation. Ecol. Appl., 21, 1926–1931. [Google Scholar]
  • Bernhardt E.S., Palmer M.A., Allan J.D., Alexander G., Barnas K., Brooks S., Carr J., Clayton S., Dahm C., Follstad-Shah J., Galat D., Gloass S., Goodwin P., Hart D., Hassett B., Jenkinson R., Katz S., Kondolf G.M., Lake S., Lave R., Meyer J. L., O’Donnell T.K., Pagano L., Powell B. and Sudduth E., 2005. Synthesizing U.S. river restoration efforts. Science, 308, 636–637. [CrossRef] [PubMed] [Google Scholar]
  • Bott T.L., Jackson J.K., McTammany M.E., Newbold J.D., Rier S.T., Sweeney B.W. and Battle J.M., 2012. Abandoned coal mine drainage and its remediation: impacts on stream ecosystem structure and function. Ecol. Appl., 22, 2144-2163. [CrossRef] [PubMed] [Google Scholar]
  • Brooks S.S. and Lake P.S., 2007. River restoration in Victoria, Australia: change is in the wind, and none too soon. Restor. Ecol., 15, 584–591. [CrossRef] [Google Scholar]
  • Cravotta C.A. III, Brightbill R.A. and Langland M.J., 2010. Abandoned mine drainage in the Swatara Creek Basin, Southern Anthracite Coalfield, Pennsylvania, USA: 1. Stream water quality trends coinciding with the return of fish. Mine Water Environ., 29, 176–199. [CrossRef] [Google Scholar]
  • Dangles O., Malmqvist B. and Laudon H., 2004. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos, 104, 149–155. [CrossRef] [Google Scholar]
  • DeNicola D.M. and Stapleton M.G., 2002. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects. Environ Pollut., 119, 303–315. [CrossRef] [PubMed] [Google Scholar]
  • Dinsmore B., 1968. The Aquatic Ecology of Tom’s Run, Clarion County, Pennsylvania- Preceding Watershed Reclamation. Report to the Pennsylvania Department of Mines and Mineral Industries, Bureau of Coal Research, and the Pennsylvania Department of Health, Bureau of Sanitary Engineering. [Google Scholar]
  • Gerhardt A., De Bisthoven L.J. and Soares A., 2004. Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environ. Pollut., 130, 263–274. [CrossRef] [PubMed] [Google Scholar]
  • Gunn J., Sarrazin-Delay C., Wesolek B., Stasko A. and Szkokan-Emilson E., 2010. Delayed recovery of benthic macroinvertebrate communities in Junction Creek, Sudbury, Ontario, after the diversion of acid mine drainage. Hum. Ecol. Risk Assess., 16, 901–912. [CrossRef] [Google Scholar]
  • Hedin R.S., 2001. Restoration of Little Hefren Run, Cook Forest State Park. Final Report. http://www2.datashed.org/sites/default/files/little_hefren_final_report.pdf. [Google Scholar]
  • Henry T.B., Irwin E.R., Grizzle J.M., Wildhaber M.L. and Brumbaugh W.G., 1999. Acute toxicity of an acid mine drainage mixing zone to juvenile bluegill and largemouth bass. Trans. Am. Fish. Soc., 128, 919–928. [CrossRef] [Google Scholar]
  • Herlihy A.T., Kaufmann P.R. and Mitch M.E., 1990. Regional estimates of acid mine drainage impact on streams in the Mid-Atlantic and Southeastern United States. Water, Air, Soil Pollut., 50, 91–107. [CrossRef] [Google Scholar]
  • Jacobs J.A., Lehr J.H. and Testa S.M., 2014. Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils: Causes, Assessment, Prediction, Prevention, and Remediation. John Wiley & Sons, 504 p. [Google Scholar]
  • Johnson D.B., 2003. Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air, Soil Pollut. F. 3, 47–66. [CrossRef] [Google Scholar]
  • Johnson D.B. and Hallberg K.B., 2005. Acid mine drainage remediation options: a review. Sci. Total Environ., 38, 3–14. [CrossRef] [PubMed] [Google Scholar]
  • Johnson K.S., Thompson P.C., Gromen L. and Bowman J., 2014. Spatial patterns in macroinvertebrate recovery and leaf litter breakdown in an acid mine impacted stream treated with an active alkaline doser. Environ. Monit. Assess., 186, 4111–4127. [CrossRef] [PubMed] [Google Scholar]
  • Kimmel W.G., 1983. The impact of acid mine drainage on the stream ecosystem. In: Majumdar S.K. and Miller W.W. (eds.). Pennsylvania Coal: Resources, Technology and Utilization, Pennsylvania Academy of Science, Easton, PA. [Google Scholar]
  • Kimmel W.G. and Argent D.G. 2010. Stream fish community responses to a gradient of specific conductance. Water, Air, Soil Pollut., 206, 49–56. [CrossRef] [Google Scholar]
  • Kruse N.A., DeRose L., Korenowsky R., Bowman J.R., Lopez D., Johnson K.S. and Rankin E., 2013. The role of remediation, natural alkalinity sources and physical stream parameters in stream recovery. J. Environ. Manage., 128, 1000–1011. [CrossRef] [PubMed] [Google Scholar]
  • Leibold M.A. and Mikkelson G.M., 2002. Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos, 97, 237–250. [CrossRef] [Google Scholar]
  • Louhi P., Mykrä H., Paavola R., Huusko A., Vehanen T., Mäki-Petäys A. and Muotka T., 2011. Twenty years of stream restoration in Finland: little response by benthic macroinvertebrate communities. Ecol. Appl. 21, 1950–1961. [Google Scholar]
  • Mack B., McDonald L.M. and Skousen J., 2010. Acidity decay of above-drainage underground mines in West Virginia. J. Environ. Qual. 39, 1043–1050. [CrossRef] [PubMed] [Google Scholar]
  • Matthews W.J., 1998. Patterns in freshwater fish ecology. Chapman and Hall, New York, 756 p. [Google Scholar]
  • Merritt G.L. and Emrich G.H., 1970. The need for a hydrogeologic evaluation in mine drainage abatement program: a case study: Tom’s Run, Clarion County, Pennsylvania. Bureau of Sanitary Engineering, Pennsylvania Department of Health. Paper presented before the Third Symposium on Coal Mine Drainage Research. [Google Scholar]
  • Muotka T., Paavola R., Haapala A., Novikmec M. and Laasonen P., 2002. Long-term recovery of stream habitat structure and benthic invertebrate communities from in-stream restoration. Biol. Conserv., 105, 243–253. [CrossRef] [Google Scholar]
  • Nelson S.M. and Roline R.A., 1996. Recovery of a stream macroinvertebrate community from mine drainage disturbance. Hydrobiologia, 339, 73–84. [CrossRef] [Google Scholar]
  • Palmer M.A., 2009. Reforming watershed restoration: science in need of application and applications in need of science. Estuar. Coast, 32, 1–17. [CrossRef] [Google Scholar]
  • Plafkin J.L., Barbour M.T., Porter K.D., Gross S.K. and Hughes R.M., 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macro-invertebrates and fish. EPA/444/ 4-89-001. United States Environmental Protection Agency, Washington, D.C. [Google Scholar]
  • Simate G.S. and Ndlovu. 2014. Acid mine drainage: challenges and opportunities. J. Environ. Chem. Eng., 2, 1785–1803. [CrossRef] [Google Scholar]
  • Stafford S., Weaver T.J. and Hedin R.S., 2004. Geochemistry, hydrology, and effects from the plugging of artesian flows of acid mine drainage: Clarion River Watershed, Northwestern Pennsylvania. In National Meeting of the American Society of Mining and Reclamation. Morgantown, WV: The American Society of Mining and Reclamation. [Google Scholar]
  • Sundermann A., Stoll S. and Haase P., 2011. River restoration success depends on the species pool of the immediate surroundings. Ecol. Appl., 21, 1962–1971. [CrossRef] [PubMed] [Google Scholar]
  • Sutcliffe D.W. and Hildrew A.G., 1989. Invertebrate communities in acid streams. In: Morris R., et al. (eds.), Acid toxicity and aquatic animals. Society for Experimental Biology Seminar Series, Vol. 34, Cambridge University Press, pp. 13–30. [Google Scholar]
  • Tomkiewicz S.M. and Dunson W.A., 1977. Aquatic insect diversity and biomass in a stream marginally polluted by acid mine drainage. Water Res., 11, 397–402. [CrossRef] [Google Scholar]
  • United States Department of the Interior. 2015. Website: http://www.osmre.gov/programs/aml.shtm Accessed Feb. 5, 2015. [Google Scholar]
  • Van Damme P., Hamel C., Ayala A. and Bervoits L., 2008. Macroinvertebrate community response to acid mine drainage in rivers of the High Andes (Bolivia). Environ. Pol., 156, 1061–1068. [CrossRef] [PubMed] [Google Scholar]
  • Walsh C.J., Fletcher T.D. and Ladson A.R., 2005. Stream restoration in urban catchments through redesigning stormwater systems: looking to the catchment to save the stream. J.N. Am. Benthol. Soc., 24, 690–705. [CrossRef] [Google Scholar]
  • Wohl E., Angermeier P.L., Bledsoe B., Kondolf G.M., MacDonnell L., Merritt D.M., Palmer M.A., Poff N.L. and Tarboton D., 2005. River restoration. Water Resour. Res., 41, W10301. [Google Scholar]
  • Wood S.C., Younger P.L. and Robins N.S., 1999. Long-term changes in the quality of polluted minewater discharges from abandoned underground coal workings in Scotland. Q. J. Eng. Geol. Hydroge., 32, 69–79. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.