Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 412, 2014
Article Number 06
Number of page(s) 13
Published online 10 January 2014
  • American Public Health Association, 1998. Standard Methods for the Examination of Water and Waste Water, 20th edn., Washington, DC.
  • Burford M., Webster I., Revill A., Kenyon R., Whittle M. and Curwen G., 2012. Controls on phytoplankton productivity in a wet-dry tropical estuary. Estuar. Coast. Shelf Sci., 113, 141−151. [CrossRef]
  • Chen Y.W., Qin B.Q., Teubner K. and Dokulil M.T., 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res., 25, 445–453. [CrossRef]
  • Dokulil M.T., 1984. Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedlersee, Austria). Int. Rev. Gesamten Hydrobiol., 69, 679–727. [CrossRef]
  • Dokulil M.T. and Padisak J., 1994. Long-term compositional response of phytoplankton in a shallow, turbid environment, Neusiedlersee (Austria/Hungary). Hydrobiologia, 275, 125–137. [CrossRef]
  • Fu C.Z., Wu J.H., Chen J.K., Qu Q.H. and Lei G.C., 2003. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodivers. Conserv., 12, 1649–1685. [CrossRef]
  • García de Emiliani M.O., 1990. Phytoplankton ecology of the middle Paraná River. Acta Limnol. Bras., 3, 391-417.
  • García de Emiliani M.O., 1997. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Paraná River, Argentina). Hydrobiologia, 357, 1–15. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Hammer Ø., Harper D. and Ryan P., 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia electronica, 4, 9. [MathSciNet]
  • Harris G.P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol., 10, 1–163.
  • Hein T., Baranyi C., Heiler G., Holarek C., Riedler P. and Schiemer F., 1999. Hydrology as a major factor determining plankton development in two floodplain segments and the River Danube, Austria. Arch. Hydrobiol. Suppl., 115, 439–452.
  • Huang L.M., Jian W.J., Song X.Y., Huang X.P., Liu S., Qian P.Y., Yin K.D. and Wu M., 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar. Pollut. Bull., 49, 588–596. [CrossRef] [PubMed]
  • Izaguirre I., O’Farrell I. and Tell G., 2001. Variation in phytoplankton composition and limnological features in a water–water ecotone of the Lower Paraná Basin (Argentina). Freshwater Biol., 46, 63–74.
  • Jin X.C., Liu H.L., Tu Y.Q., Zhang Z.X. and Zhu X., 1990. Eutrophication of lakes in China, Chinese Research Academy of Environmental Sciences, Beijing.
  • Lewis W.M., 1987. Tropical limnology. Annu. Rev. Ecol. Syst., 18, 159–184. [CrossRef]
  • Lind O.T., Doyle R., Vodopich D.S., Trotter B.G., Limón J.G. and Davalos-Lind L., 1992. Clay turbidity: regulation of phytoplankton production in a large, nutrient-rich tropical lake. Limnol. Oceanogr., 37, 549–565. [CrossRef]
  • Lorenzen C.J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12, 343–346. [CrossRef]
  • Moss B., Booker I., Balls H. and Manson K., 1989. Phytoplankton distribution in a temperate floodplain lake and river system. I. Hydrology, nutrient sources and phytoplankton biomass. J. Plankton Res., 11, 813–838. [CrossRef]
  • Moss B., Madgwick J., Phillips G., 1996. A guide to the restoration of nutrient-enriched shallow lakes. Broads Authority, Norwich, UK, 180 p.
  • Nõges T. and Nõges P., 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia, 408, 277–283.
  • Nõges T., Nõges P. and Laugaste R., 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia, 506, 257–263.
  • Pęczuła W. and Szczurowska A., 2013. Long-term changes in phytoplankton in a humic lake in response to the water level rising: the effects of beaver engineering on a freshwater ecosystem. Knowledge Managt. Aquatic Ecosyst., 410, 06.
  • Reynolds C.S., 1984. The Ecology of Freshwater Phytoplankton, Cambridge University Press, London.
  • Reynolds C.S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia, 289, 9–21. [CrossRef]
  • Riedler P., Barany C., Hein T., Keckeis S. and Schagerl M., 2006. Abiotic and biotic control of phytoplankton development in dynamic side-arms of the River Danube. Austria. Arch. Hydrobiol. Suppl., 16, 577–594.
  • Rojo C., Cobelas M.A. and Arauzo M., 1994. An elementary, structural analysis of river phytoplankton. Hydrobiologia, 289, 43–55. [CrossRef]
  • Søballe D.M., and Kimmel B.L., 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68, 1943–1954. [CrossRef]
  • Shankman D., Keim B.D. and Song J., 2006. Flood frequency in China’s Poyang Lake region: Trends and teleconnections. Int. J. Climatol., 26, 1255–1266. [CrossRef]
  • Sullivan B., Prahl F., Small L. and Covert P., 2001. Seasonality of phytoplankton production in the Columbia River: A natural or anthropogenic pattern? Geochim. Cosmochim. Acta, 65, 1125–1139. [CrossRef]
  • Straskraba M., 1999. Retention time as a key variable of reservoir limnology. In: Theoretical reservoir ecology and its applications (eds J.G. Tundisi & M. Straskraba). Sao Carlos: International Institute of Ecology, Brazilian Academy and Backhuys Publishers, 385–410.
  • Vanni M.J. and Temte J., 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr., 35, 697–709. [CrossRef]
  • Vollenweider R.A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol., 33, 53–83
  • Wang X.H., 2004. Evaluation on Poyang Lake Wetland Ecosystem (in Chinese), Science Press, Beijing.
  • Wang Y.Y., Yu X.B., Li W.H., Xu J., Chen Y.W. and Fan N., 2011. Potential influence of water level changes on energy flows in a lake food web. Chinese Sci. Bull., 56, 2794–2802. [CrossRef]
  • Wu Z.S., Cai Y.J., Liu X., Xu C.P., Chen Y.W. and Zhang L., 2013. Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China. J. Great Lakes Res., 39, 476–483. [CrossRef]
  • Xu H., Paerl H.W., Qin B.Q, Zhu G.W. and Gao G., 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr., 55, 420–432. [CrossRef]
  • Zeng H., Song L.R., Yu Z.G. and Chen H.T., 2006. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons. Sci. Total Environ., 367, 999–1009. [CrossRef] [PubMed]
  • Zhu H.H. and Zhang B. 1997. The Poyang Lake, University of Science & Technology of China Press, Hefei (in Chinese).
  • Zinabu G.M., 2002. The effects of wet and dry seasons on concentrations of solutes and phytoplankton biomass in seven Ethiopian rift-valley lakes. Limnologica, 32, 169–179. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.