Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 412, 2014
Article Number 06
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2013088
Published online 10 January 2014
  • American Public Health Association, 1998. Standard Methods for the Examination of Water and Waste Water, 20th edn., Washington, DC. [Google Scholar]
  • Burford M., Webster I., Revill A., Kenyon R., Whittle M. and Curwen G., 2012. Controls on phytoplankton productivity in a wet-dry tropical estuary. Estuar. Coast. Shelf Sci., 113, 141−151. [CrossRef] [Google Scholar]
  • Chen Y.W., Qin B.Q., Teubner K. and Dokulil M.T., 2003. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res., 25, 445–453. [Google Scholar]
  • Dokulil M.T., 1984. Assessment of components controlling phytoplankton photosynthesis and bacterioplankton production in a shallow, alkaline, turbid lake (Neusiedlersee, Austria). Int. Rev. Gesamten Hydrobiol., 69, 679–727. [CrossRef] [Google Scholar]
  • Dokulil M.T. and Padisak J., 1994. Long-term compositional response of phytoplankton in a shallow, turbid environment, Neusiedlersee (Austria/Hungary). Hydrobiologia, 275, 125–137. [CrossRef] [Google Scholar]
  • Fu C.Z., Wu J.H., Chen J.K., Qu Q.H. and Lei G.C., 2003. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodivers. Conserv., 12, 1649–1685. [Google Scholar]
  • García de Emiliani M.O., 1990. Phytoplankton ecology of the middle Paraná River. Acta Limnol. Bras., 3, 391-417. [Google Scholar]
  • García de Emiliani M.O., 1997. Effects of water level fluctuations on phytoplankton in a river-floodplain lake system (Paraná River, Argentina). Hydrobiologia, 357, 1–15. [Google Scholar]
  • Hammer Ø., Harper D. and Ryan P., 2001. PAST: palaeontological statistics software package for education and data analysis. Palaeontologia electronica, 4, 9. [MathSciNet] [Google Scholar]
  • Harris G.P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol., 10, 1–163. [Google Scholar]
  • Hein T., Baranyi C., Heiler G., Holarek C., Riedler P. and Schiemer F., 1999. Hydrology as a major factor determining plankton development in two floodplain segments and the River Danube, Austria. Arch. Hydrobiol. Suppl., 115, 439–452. [Google Scholar]
  • Huang L.M., Jian W.J., Song X.Y., Huang X.P., Liu S., Qian P.Y., Yin K.D. and Wu M., 2004. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons. Mar. Pollut. Bull., 49, 588–596. [CrossRef] [PubMed] [Google Scholar]
  • Izaguirre I., O’Farrell I. and Tell G., 2001. Variation in phytoplankton composition and limnological features in a water–water ecotone of the Lower Paraná Basin (Argentina). Freshwater Biol., 46, 63–74. [Google Scholar]
  • Jin X.C., Liu H.L., Tu Y.Q., Zhang Z.X. and Zhu X., 1990. Eutrophication of lakes in China, Chinese Research Academy of Environmental Sciences, Beijing. [Google Scholar]
  • Lewis W.M., 1987. Tropical limnology. Annu. Rev. Ecol. Syst., 18, 159–184. [Google Scholar]
  • Lind O.T., Doyle R., Vodopich D.S., Trotter B.G., Limón J.G. and Davalos-Lind L., 1992. Clay turbidity: regulation of phytoplankton production in a large, nutrient-rich tropical lake. Limnol. Oceanogr., 37, 549–565. [CrossRef] [Google Scholar]
  • Lorenzen C.J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12, 343–346. [CrossRef] [Google Scholar]
  • Moss B., Booker I., Balls H. and Manson K., 1989. Phytoplankton distribution in a temperate floodplain lake and river system. I. Hydrology, nutrient sources and phytoplankton biomass. J. Plankton Res., 11, 813–838. [CrossRef] [Google Scholar]
  • Moss B., Madgwick J., Phillips G., 1996. A guide to the restoration of nutrient-enriched shallow lakes. Broads Authority, Norwich, UK, 180 p. [Google Scholar]
  • Nõges T. and Nõges P., 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia, 408, 277–283. [Google Scholar]
  • Nõges T., Nõges P. and Laugaste R., 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia, 506, 257–263. [Google Scholar]
  • Pęczuła W. and Szczurowska A., 2013. Long-term changes in phytoplankton in a humic lake in response to the water level rising: the effects of beaver engineering on a freshwater ecosystem. Knowledge Managt. Aquatic Ecosyst., 410, 06. [Google Scholar]
  • Reynolds C.S., 1984. The Ecology of Freshwater Phytoplankton, Cambridge University Press, London. [Google Scholar]
  • Reynolds C.S., 1994. The long, the short and the stalled: on the attributes of phytoplankton selected by physical mixing in lakes and rivers. Hydrobiologia, 289, 9–21. [CrossRef] [Google Scholar]
  • Riedler P., Barany C., Hein T., Keckeis S. and Schagerl M., 2006. Abiotic and biotic control of phytoplankton development in dynamic side-arms of the River Danube. Austria. Arch. Hydrobiol. Suppl., 16, 577–594. [Google Scholar]
  • Rojo C., Cobelas M.A. and Arauzo M., 1994. An elementary, structural analysis of river phytoplankton. Hydrobiologia, 289, 43–55. [CrossRef] [Google Scholar]
  • Søballe D.M., and Kimmel B.L., 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68, 1943–1954. [CrossRef] [PubMed] [Google Scholar]
  • Shankman D., Keim B.D. and Song J., 2006. Flood frequency in China’s Poyang Lake region: Trends and teleconnections. Int. J. Climatol., 26, 1255–1266. [Google Scholar]
  • Sullivan B., Prahl F., Small L. and Covert P., 2001. Seasonality of phytoplankton production in the Columbia River: A natural or anthropogenic pattern? Geochim. Cosmochim. Acta, 65, 1125–1139. [CrossRef] [Google Scholar]
  • Straskraba M., 1999. Retention time as a key variable of reservoir limnology. In: Theoretical reservoir ecology and its applications (eds J.G. Tundisi & M. Straskraba). Sao Carlos: International Institute of Ecology, Brazilian Academy and Backhuys Publishers, 385–410. [Google Scholar]
  • Vanni M.J. and Temte J., 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnol. Oceanogr., 35, 697–709. [CrossRef] [Google Scholar]
  • Vollenweider R.A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol., 33, 53–83 [Google Scholar]
  • Wang X.H., 2004. Evaluation on Poyang Lake Wetland Ecosystem (in Chinese), Science Press, Beijing. [Google Scholar]
  • Wang Y.Y., Yu X.B., Li W.H., Xu J., Chen Y.W. and Fan N., 2011. Potential influence of water level changes on energy flows in a lake food web. Chinese Sci. Bull., 56, 2794–2802. [CrossRef] [Google Scholar]
  • Wu Z.S., Cai Y.J., Liu X., Xu C.P., Chen Y.W. and Zhang L., 2013. Temporal and spatial variability of phytoplankton in Lake Poyang: The largest freshwater lake in China. J. Great Lakes Res., 39, 476–483. [Google Scholar]
  • Xu H., Paerl H.W., Qin B.Q, Zhu G.W. and Gao G., 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol. Oceanogr., 55, 420–432. [CrossRef] [Google Scholar]
  • Zeng H., Song L.R., Yu Z.G. and Chen H.T., 2006. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons. Sci. Total Environ., 367, 999–1009. [CrossRef] [PubMed] [Google Scholar]
  • Zhu H.H. and Zhang B. 1997. The Poyang Lake, University of Science & Technology of China Press, Hefei (in Chinese). [Google Scholar]
  • Zinabu G.M., 2002. The effects of wet and dry seasons on concentrations of solutes and phytoplankton biomass in seven Ethiopian rift-valley lakes. Limnologica, 32, 169–179. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.