Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 412, 2014
Article Number 07
Number of page(s) 9
DOI https://doi.org/10.1051/kmae/2013089
Published online 17 January 2014
  • Aprahamian M.W. and Aprahamian C.D., 2001. The influence of water temperature and flow on year class strength of twaite shad (Alosa fallax fallax) from the river Severn, England. Bull. Fr. Pêche Piscic., 362/363, 953–972. [CrossRef] [EDP Sciences] [Google Scholar]
  • Aprahamian M.W., Baglinière J.L., Sabatié M.R., Alexandrino P., Thiel R. and Aprahamian C.D., 2003. Biology, status, and conservation of the anadromous Atlantic twaite shad Alosa fallax fallax. Am. Fish. Soc. Symp., 35, 103–124. [Google Scholar]
  • Arendt J.D., 1997. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol., 72, 149–177. [CrossRef] [Google Scholar]
  • Bardonnet A. and Jatteau Ph., 2008. Salinity tolerance in young Allis shad larvae (Alosa alosa L.). Ecol. Freshw. Fish, 17, 193–197. [CrossRef] [Google Scholar]
  • Blaxter J.H.S., 1974. The early life history of fish, Springer Verlag, Berlin, 756 p. [Google Scholar]
  • Brown C. and Day R.L. 2002 The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish. Fish., 3, 79–94. [CrossRef] [Google Scholar]
  • Caswell P. and Aprahamian M.W., 2001. Use of river habitat survey to determine the spawning habitat characteristics of twaite shad (Alosa fallax fallax). Bull. Fr. Pêche Piscic., 362/363, 919–929. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chícharo L., Chícharo M.A. and Ben-Hamadou R., 2006. Use of a hydrotechnical infrastructure (Alqueva Dam) to regulate planktonic assemblages in the Guadiana estuary: basis for the sustainable water and ecosystem services management. Estuar. Coastal Shelf Sci., 70, 3–18. [CrossRef] [Google Scholar]
  • Collares-Pereira M.J., Cowx I.G., Ribeiro F., Rodrigues J.A. and Rogado L., 2000. Threats imposed by water development schemes on the conservation of endangered fish species in the Guadiana River Basin in Portugal. Fish. Manag. Ecol., 7, 167–178. [CrossRef] [Google Scholar]
  • Costa M.J., Almeida P.R., Domingos I.M., Costa J.L., Correia M.J., Chaves M.L. and Teixeira C.M., 2001. Present status of the main shads’ populations in Portugal. Bull. Fr. Pêche Piscic., 362/363, 1109–1116. [CrossRef] [EDP Sciences] [Google Scholar]
  • Crecco V.A. and Savoy T.F. 1985 Effects of biotic and abiotic factors on growth and relative survival of young American shad, Alosa sapidissima, in the Connecticut river. Can. J. Fish. Aquat. Sci., 42, 1640–1648. [CrossRef] [Google Scholar]
  • Esteves E., 2011. Ecology of early life-history stages of anadromous shads. Ecology In: Dempsey S.P. (ed.), Fish ecology, Nova Science Publishers Inc. New York, 151–172. [Google Scholar]
  • Esteves E. and Andrade J.P., 2008. Diel and seasonal distribution patterns of eggs, embryos and larvae of Twaite shad Alosa fallax fallax (Lacépède, 1803) in a lowland tidal river. Acta Oecol., 34, 172–185. [CrossRef] [Google Scholar]
  • Esteves E. and Andrade J.P., 2012. Intrannual effects of biotic and abiotic factors on growth and mortality of anadromous twaite shad, Alosa fallax fallax (Lacépède, 1803), larvae. In: Pourali K. and Raad V.N. (eds.) Larvae: morphology, biology, and life cycle, Nova Science Publishers Inc. New York, 57–82. [Google Scholar]
  • Esteves E., Pina T. and Andrade J.P., 2009. Diel and seasonal changes in nutritional condition of the anadromous twaite shad Alosa fallax fallax (Lacépède, 1803) larvae. Ecol. Freshw. Fish, 18, 132−144. [CrossRef] [Google Scholar]
  • Fushimi H., 2010. Production of juvenile marine fish for stock enhancement in Japan. Aquaculture, 200, 33–53. [CrossRef] [Google Scholar]
  • Gerkens M. and Thiel R., 2001. Habitat use of age - 0 twaite shad (Alosa fallax Lacépède, 1803) in the tidal freshwater region of the Elbe river, Germany. Bull. Fr. Pêche Piscic., 362/363, 773–784. [CrossRef] [EDP Sciences] [Google Scholar]
  • Greene K.E., Zimmerman J.L., Laney R.W. and Thomas-Blate J.C., 2009. Atlantic coast diadromous fish habitat: A review of utilization, threats, recommendations for conservation, and research needs. ASMFC Habitat Management Series No. 9, Washington, D.C, 464 p. [Google Scholar]
  • Hendricks M.L., 2003. Culture and transplant of alosines in North America. In: Limburg K.E. and Waldman J.R. (eds.), Biodiversity, status, and conservation of the world’s shads, American Fisheries Society, 35, Bethesda, Maryland, 303–312. [Google Scholar]
  • Houde E.D., 1987. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp., 2, 17–29. [Google Scholar]
  • Houde E.D., 1989. Comparative Growth, Mortality, and Energetics of Marine Fish Larvae: Temperature and Implied Latitudinal Effects. Fish. Bull., 87, 471–495. [Google Scholar]
  • Houde E.D., 2002. Mortality. In: Fuiman L.A. and Werner R.G. (eds.), Fisheries science – the unique contributions of early life stages, Blackwell Science Ltd, Oxford, 64–87. [Google Scholar]
  • Houde E.D., 2008. Emerging from Hjort’s Shadow. J. Northwest Atl. Fish. Sci., 41, 53–70. [CrossRef] [EDP Sciences] [Google Scholar]
  • Howey R.G., 1985. Intensive culture of juvenile american shad. Prog. Fish-Cult., 47, 203–212. [CrossRef] [Google Scholar]
  • Jia Y., Liu Q., Goudie C.A. and Simco B.A., 2009. Survival, growth, and feed utilization of pre- and postmetamorphic american shad exposed to increasing salinity. N. Am. J. Aquac., 71, 197-205. [CrossRef] [Google Scholar]
  • Johnson J.H. and Dropkin D.S., 1995. Effects of prey density and short term food deprivation on the growth and survival of American shad larvae. J. Fish Biol., 46, 872–879. [CrossRef] [Google Scholar]
  • Jonsson B., Waples R.S. and Friedland K.D., 1999. Extinction considerations for diadromous fishes. J. Mar. Sci., 56, 405–409. [Google Scholar]
  • Lavens P. and Sorgeloos P., 1996. Manual on the production and use of live food for aquaculture, FAO Fish. Tech. Pap., 361, 295 p. [Google Scholar]
  • Leach S.D. and Houde E.D., 1999. Effects of environmental factors on survival, growth, and production of american shad larvae. J. Fish Biol., 54, 767–786. [CrossRef] [Google Scholar]
  • Leguen I., Véron V., Sevellec C., Azam D., Sabatié R., Prunet P. and Baglinière J.L., 2007. Development of hypoosmoregulatory ability in allis shad Alosa alosa. J. Fish Biol., 70, 630–637. [CrossRef] [Google Scholar]
  • Limburg K.E. and Ross R.M., 1995. Growth and mortality rates of larval american shad, Alosa sapidissima, at different salinities. Estuaries, 2, 335–340. [Google Scholar]
  • Limburg K.E. and Waldman J.R., 2009. Dramatic declines in North Atlantic diadromous fishes. BioScience, 59, 955–965. [CrossRef] [Google Scholar]
  • Lopéz M.A., Gázquez N., Olmo-Vidal J.M., Aprahamian M.W. and Gisbert E. 2007. The presence of anadromous twaite shad (Alosa fallax) in the Ebro River (western Mediterranean, Spain): an indicator of the population’s recovery? J. Appl. Ichthyol., 23, 163–166. [CrossRef] [Google Scholar]
  • Maes J., Stevens M. and Breine J., 2008. Poor water quality constrains the distribution and movements of twaite shad Alosa fallax fallax (Lacépède, 1803) in the watershed of River Scheldt. Hydrobiologia, 602, 129–143. [CrossRef] [Google Scholar]
  • Magath V. and Thiel R., 2013. Stock recovery, spawning period and spawning area expansion of the twaite shad Alosa fallax in the Elbe estuary, southern North Sea. Endanger. Species Res., 20, 109–119. [CrossRef] [Google Scholar]
  • McDowall R.M., 1992. Particular problems for the conservation of diadromous fish. Aquat. Conserv. Mar. Freshw. Ecosys., 2, 351–355. [CrossRef] [Google Scholar]
  • McDowall R.M., 1999. Different kinds of diadromy: Different kinds of conservation Problems. J. Mar. Sci., 56, 410–413. [Google Scholar]
  • Morais P., Chícharo M.A. and Chícharo L., 2009. Changes in a temperate estuary during the filling of the biggest European dam. Sci. Total Environ., 407, 2245–2259. [CrossRef] [PubMed] [Google Scholar]
  • Perez K.O. and Munch S.B., 2010. Extreme selection on size in the early lives of fish. Evolution, 64, 2450–2457. [PubMed] [Google Scholar]
  • Philippart J.C., 1995. Is captive breeding an effective solution for the preservation of endemic species? Biol. Cons., 72, 281–295. [CrossRef] [Google Scholar]
  • Quignard J.P. and Douchement C., 1991. Alosa fallax fallax (Lacépède, 1803). In: Hoestlandt H. (ed.), The Freshwater Fishes of Europe, Clupeidae, Anguillidae, Vol. 2, Aula-Verlag Wiesbaden, 225–256. [Google Scholar]
  • Sarrazin F. and Barbault R., 1996. Reintroduction: challenges and lessons for basic ecology. Trends Ecol. Evol., 11, 474–478. [CrossRef] [PubMed] [Google Scholar]
  • Waldman J.R. and Limburg K.E., 2003. The world’s shads: Summary of their status, conservation, and research needs. In: Limburg K.E. and Waldman J.R. (eds.), Biodiversity, status, and conservation of the world’s shads, American Fisheries Society Symposium 35, Bethesda, Maryland, 363–369. [Google Scholar]
  • Wiggins T.A., Bender T.R.Jr., Mudraka V.A. and Coll J.A., 1985. The development, feeding, growth, and survival of cultured American shad larvae through the transition from endogenous to exogenous nutrition. Progr. Fish-Cult., 47, 87–93. [CrossRef] [Google Scholar]
  • Zar J.H., 1999. Biostatistical Analysis, 4th ed. Prentice Hall, Upper Saddle River, NJ, 662 p. [Google Scholar]
  • Zydlewski J. and McCormick S.D., 1997. The ontogeny of salinity tolerance in the American shad, Alosa sapidissima. Can. J. Fish. Aquat. Sci., 54, 182–189. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.