Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 405, 2012
Article Number 06
Number of page(s) 17
Published online 13 June 2012
  • Appelberg M., Berger H.M., Hesthagen T., Kleiven E., Kurkilahti M., Raitaniemi J. andRask M., 1995. Development and intercalibration of methods of Nordic freshwater fish monitoring. Water Air Soil Pollut., 85, 883–888. [CrossRef] [Google Scholar]
  • Balk H., 2001. Development of hydroacoustic methods for fish detection in shallow water, Ph.D. thesis, Faculty of Mathematics and Natural Science, University of Oslo, Norway. [Google Scholar]
  • Balk H. and Lindem T., 2007. Sonar4 and Sonar5-Pro Post Processing Systems, Operator Manual, Version 5.9.7. Balk and Lindem Data Acquisition, Oslo, Norway. [Google Scholar]
  • Bíró P., 1997. Temporal variation in Lake Balaton and its fish populations. Ecol. Freshwater Fish, 6, 196–216. [Google Scholar]
  • Boswell K.M., Wilson M.P. andWilson C.A., 2007. Hydroacoustics as a tool for assessing fish biomass and size distribution associated with discrete shallow water estuarine habitats in Louisiana. Estuar. Coast., 30, 607–617. [Google Scholar]
  • Boswell K.M., Kaller M.D., Cowan Jr.J.H. andWilson C.A., 2008. Evaluation of target strength-fish length equation choices for estimating estuarine fish biomass. Hydrobiologia, 610, 113–123. [CrossRef] [Google Scholar]
  • Boswell K.M., Wilson M.P., MacRae P.S.D., Wilson C.A. andCowan Jr.J.H., 2010. Seasonal estimates of fish biomass and length distributions using acoustics and traditional nets to identify estuarine habitat preferences in Barataria Bay, Louisiana. Marine & Coastal Fisheries, 2, 83–97. [CrossRef] [Google Scholar]
  • CEN (European Committee for Standardization), 2005. Water quality – Sampling of fish with multi-mesh gillnets (14757 :2005), CEN, Brussels. [Google Scholar]
  • Deceliere-Vergés C., Argillier C., Lanoiselée C., De Bortoli J. andGuillard J., 2009. Stability and precision of the metrics obtained using CEN multi-mesh gillnets in natural and artificial lakes in France. Fish. Res., 99, 17–25. [CrossRef] [Google Scholar]
  • Dennerline D.E., Jennings C.A. andDegan D.J., 2012. Relationships between hydroacoustic derived density and gill net catch : Implication for fish assessments. Fish. Res., 123-124, 78–89. [CrossRef] [Google Scholar]
  • Didrikas T. andHansson S., 2004. In situ target strength of the Baltic Sea herring and sprat. ICES J. Mar. Sci., 61, 378–382. [CrossRef] [Google Scholar]
  • Draštík V. andKubečka J., 2005. Fish avoidance of acoustic survey boat in shallow waters. Fish. Res., 72, 219–228. [CrossRef] [Google Scholar]
  • Draštík V., Kubečka J., Čech M., Frouzová J., Říha M., Jůza T., Tušer M., Jarolím O., Prchalová M., Peterka J., Vašek M., Kratochvíl M., Matĕna J. and Mrkvička T., 2009. Hydroacoustic estimates of fish stocks in temperate reservoirs : day or night surveys? Aquat. Living Resour., 22, 69–77. [CrossRef] [EDP Sciences] [Google Scholar]
  • Elliott J.M. andFletcher J.M., 2001. A comparison of three methods for assessing the abundance of Arctic char, Salvelinus alpinus, in Windermere (northwest England). Fish. Res., 53, 39–46. [CrossRef] [Google Scholar]
  • Emmrich M., Helland L.P., Busch S., Schiller S. andMehner T., 2010. Hydroacoustic estimates of fish densities in comparison with stratified pelagic trawl sampling in two deep, coregonid-dominated lakes. Fish. Res., 105, 178-186. [CrossRef] [Google Scholar]
  • Erős T., Heino J., Schmera D. andRask M., 2009a. Characterising functional trait diversity and trait-environment relationships in fish assemblages of boreal lakes. Freshw. Biol., 54, 1788–1803. [Google Scholar]
  • Erős T., Specziár A. andBíró P., 2009b. Assessing fish assemblages in reed habitats of a large shallow lake – A comparison between gillnetting and electric fishing. Fish. Res., 96, 70–76. [CrossRef] [Google Scholar]
  • Frouzová J., Kubečka J., Balk H. andFrouz J., 2005. Target strength of some European fish species and its dependence on fish body parameters. Fish. Res., 75, 86–96. [CrossRef] [Google Scholar]
  • Gjelland K.Ø., Bøhn T., Knudsen F.R. andAmundsen P.A., 2004. Influence of light on the swimming speed of coregonids in subarctic lakes. Ann. Zool. Fennici, 41, 137–146. [Google Scholar]
  • Godlewska M., Długoszewski B. andDoroszczyk L., 2009. Day/night effects of passing boat on fish distribution in the shallow Malta Reservoir. Hydroacoustics, 12, 61–68. [Google Scholar]
  • Godlewska M., Colon M., Jóźwik A. andGuillard J., 2011. How pulse lengths impact fish stock estimations during hydroacoustic measurements at 70 kHz. Aquat. Living Resour., 24, 71–78. [CrossRef] [EDP Sciences] [Google Scholar]
  • Godlewska M., Frouzova J., Kubečka J., Winiewolski W. andSzlakowski J., 2012. Comparison of hydroacoustic estimates with fish census in shallow Malta Reservoir – which TS/L regression to use in horizontal beam applications? Fish. Res., 123–124, 90–97. [CrossRef] [Google Scholar]
  • Guillard J. andVergès C., 2007. The repeatability of fish biomass and size distribution estimates obtained by hydroacoustic surveys using various sampling strategies and statistical analyses. Internat. Rev. Hydrobiol., 92, 605–617. [Google Scholar]
  • Hamley J.M., 1975. Review of gillnet selectivity. J. Fish. Res. Board Can., 32, 1943–1969. [Google Scholar]
  • Hansson S. andRudstam L.G., 1995. Gillnet catches as an estimate of fish abundance : a comparison between vertical gillnet catches and hydroacoustic abundances of Baltic Sea herring (Clupea harengus) and sprat (Sprattus sprattus). Can. J. Fish. Aquat. Sci., 52, 75–83. [CrossRef] [Google Scholar]
  • Herodek S., Laczkó L. and Virág Á., 1988. Lake Balaton : Research and Management, Nexus, Budapest. [Google Scholar]
  • Holmgren K. andAppelberg M., 2000. Size structure of benthic freshwater fish communities in relation to environmental gradients. J. Fish Biol., 57, 1312–1330. [CrossRef] [Google Scholar]
  • Istvánovics V., Clement A., Somlyódy L., Specziár A., Tóth L.G. andPadisák J., 2007. Updating water quality targets for shallow Lake Balaton (Hungary), recovering from eutrophication. Hydrobiologia, 581, 305–318. [CrossRef] [Google Scholar]
  • Jackson D.A. andHarvey H.H., 1997. Qualitative and quantitative sampling of lake fish communities. Can. J. Fish. Aquat. Sci., 54, 2807–2813. [CrossRef] [Google Scholar]
  • Janáč M. andJurajda P., 2005. Inter-calibration of three electric fishing techniques to estimate 0 + juvenile fish densities on sandy river beaches. Fish. Manage. Ecol., 12, 161–167. [CrossRef] [Google Scholar]
  • Knudsen F.R. andSægrov H., 2002. Benefits from horizontal beaming during acoustic survey : application to three Norwegian lakes. Fish. Res., 56, 205–211. [CrossRef] [Google Scholar]
  • Kubečka J. andWittingerova M., 1998. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fish. Res., 35, 99–106. [CrossRef] [Google Scholar]
  • Kubečka J., Duncan A., Duncan W.M., Sinclair D. andButterworth A.J., 1994. Brown trout populations of three Scottish lochs estimated by horizontal sonar and multi-mesh gillnets. Fish. Res., 20, 29–48. [CrossRef] [Google Scholar]
  • Kubečka J., Frouzová J., Balk H., Čech M., Draštík V. and Prchalová M., 2009. Regressions for conversion between target strength and fish length in horizontal acoustic surveys. In : Papadakis J.S. and Bjorno L. (eds.), Underwater acoustic measurements, Technologies & Results, Foundation for Research & Technology, Heraklion, Greece, 1039–1044. [Google Scholar]
  • Lauridsen T.L., Landkildehus F., Jeppesen E., Jørgensen T.B. andSøndergaard M., 2008. A comparison of methods for calculating Catch Per Unit Effort (CPUE) of gill net catches in lakes. Fish. Res., 93, 204–211. [CrossRef] [Google Scholar]
  • Linløkken A. andHaugen T.O., 2006. Density and temperature dependence of gill net catch per unit effort for perch, Perca fluviatilis, and roach, Rutilus rutilus. Fish. Manage. Ecol., 13, 261–269. [CrossRef] [Google Scholar]
  • Mehner T. andSchulz M., 2002. Monthly variability of hydroacoustic fish stock estimates in a deep lake and its correlation to gillnet catches. J. Fish Biol., 61, 1109–1121. [CrossRef] [Google Scholar]
  • Mehner T., Diekmann M., Brämic U. andLemcke R., 2005. Comparison of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human use intensity. Freshw. Biol., 50, 70–85. [CrossRef] [Google Scholar]
  • Millar R.B., 2000. Untangling the confusion surrounding the estimation of gill net selectivity. Can. J. Fish. Aquat. Sci., 57, 507–511. [CrossRef] [Google Scholar]
  • Mous P.J., van Densen W.L.T. andMachiels M.A.M., 2004. Vertical distribution patterns of zooplanktivorous fish in shallow, eutrophic lake, mediated by water transparency. Ecol. Freshwat. Fish., 13, 61–69. [CrossRef] [Google Scholar]
  • Murphy B. and Willis D. (eds.), 1996. Fisheries Techniques, 2nd edition, American Fisheries Society, Bethesda, Maryland. [Google Scholar]
  • Olin M. andMalinen T., 2003. Comparison of gillnet and trawl in diurnal fish community sampling. Hydrobiologia, 506–509, 443–449. [CrossRef] [Google Scholar]
  • Olin M., Kurkilahti M., Peitola P. andRuuhijärvi J., 2004. The effects of fish accumulation on the catchability of multimesh gillnet. Fish. Res., 68, 135–147. [CrossRef] [Google Scholar]
  • Peltonen H., Ruuhijärvi J., Malinen T. andHorppila J., 1999. Estimation of roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) stocks with virtual population analysis, hydroacoustics and gillnet CPUE. Fish. Res., 44, 25–36. [CrossRef] [Google Scholar]
  • Pierce R.B., Tomcko C.M., Pereira D.L and Staples D.F., 2010. Differing catchability among lakes : influences of lake basin morphology and other factors on gill-net catchability of northern pike. Trans. Am. Fish. Soc., 139, 1109–1120. [CrossRef] [Google Scholar]
  • Prchalová M., Kubečka J., Říha M., Mrkvička T., Vašek M., Jůza T., Kratochvíl M., Peterka J., Draštík V. andKřížek J., 2009. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish. Res., 96, 51–57. [Google Scholar]
  • Prchalová M., Mrkvičká T., Kubečka J., Peterka J., Čech M., Muška M., Kratochvíl M. andVašek M., 2010. Fish activity as determined by gillnet catch : A comparison of two reservoir of different turbidity. Fish. Res., 102, 291–296. [Google Scholar]
  • Prchalová M., Mrkvičká T., Peterka J., Čech M., Berec L. andKubečka J., 2011. A model of gillnet catch in relation to the catchable biomass, saturation, soak time and sampling period. Fish. Res., 107, 201–209. [CrossRef] [Google Scholar]
  • Rakowitz G., Kubečka J., Fesl C. andKeckeis H., 2009. Intercalibration of hydroacoustic and mark-recapture methods for assessing the spawning population size of a threatened fish species. J. Fish Biol., 75, 1356–1370. [CrossRef] [PubMed] [Google Scholar]
  • Simmonds J. and MacLennan D., 2005. Fisheries Acoustics : Theory and Practice, 2nd edition, Blackwell Science, Oxford. [Google Scholar]
  • Specziár A., 2010. Fish fauna of Lake Balaton : stock composition, living conditions of fish and directives of the modern utilization of the fish stock. Acta Biol. Debr. Suppl. Oecol. Hung., 23 (Hydrobiol. Monogr. 2), 7–185 (in Hungarian with an English summary). [Google Scholar]
  • Specziár A., Erős T., György Á.I., Tátrai I. andBíró P., 2009. A comparison between the Nordic gillnet and whole water column gillnet for characterizing fish assemblages in the shallow Lake Balaton. Ann. Limnol., 45, 171–180. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tátrai I., Specziár A., György Á.I. andBíró P., 2008. Comparison of fish size distribution and fish abundance estimates obtained with hydroacoustics and gill netting in the open water of a large shallow lake. Ann. Limnol. Int. J. Lim., 44, 231–240. [Google Scholar]
  • Tušer M., Kubečka J., Frouzová J. andJarolíma O., 2009. Fish orientation along the longitudinal profile of the Římov reservoir during daytime : Consequences for horizontal acoustic surveys. Fish. Res., 96, 23–29. [CrossRef] [Google Scholar]
  • Vašek M., Kubečka J., Čech M., Draštík V., Matĕna J., Mrkvičká T., Peterka J. andPrchalová M., 2009. Diel variation in gillnet catches and vertical distribution of pelagic fishes in a stratified European reservoir. Fish. Res., 96, 64–69. [Google Scholar]
  • Winfield I.J., Fletcher J.M., James J.B. andBean C.W., 2009. Assessment of fish populations in still waters using hydroacoustics and survey gill netting : Experiences with Arctic char (Salvelinus alpinus) in the UK. Fish. Res., 96, 30–38. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.