Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 405, 2012
Article Number 05
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2012011
Published online 13 June 2012
  • Barker A.V., 1999. Ammonium accumulation and ethylene evolution by tomato infected with root-knot nematode and grown under different regimes of plant nutition. Commun. Soil Sci. Plant Anal., 30, 175–182. [CrossRef] [Google Scholar]
  • Barker A.V., Maynard D.N., Mioduchowska B. and Buch A., 1970. Ammonium and salt inhibition of some physiological processes associated with seed germination. Plant Physiol., 23, 898–907. [CrossRef] [Google Scholar]
  • Bjorkman O. andDemmig B., 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489–504. [CrossRef] [PubMed] [Google Scholar]
  • Britto D.T. and Kronzucker H.J., 2002. NH+4 toxicity in higher plants : a critical review. Plant Physiol., 159, 567–584. [CrossRef] [Google Scholar]
  • Burkholder J.M., Mason K.M. andGlasgow H.B., 1992. Water-column nitrate enrichment promotes decline of eelgrass Zostera marina : evidence from seasonal mesocosm experiments. Mar. Ecol. Prog. Ser., 81, 163–178. [CrossRef] [Google Scholar]
  • Burkholder J.M., Glasgow H.B. andCooke J.E., 1994. Comparative effects of water-column nitrate enrichment on eelgrass Zostera marina, shoalgrass Halodule wrightii, and widgeongrass Ruppia maritime. Mar. Ecol. Prog. Ser., 105, 121–138. [CrossRef] [Google Scholar]
  • Cambridge M.L. andMcComb A.J., 1984. The loss of seagrasses from Cockburn Sound, Western Australia. I. The time course and magnitude of seagrass decline in relation to industrial development. Aquat. Bot., 20, 229–243. [CrossRef] [Google Scholar]
  • Chartzoulakis K., Patakas A. andBosabalidis A., 1999. Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ. Exp. Bot., 42, 113–120. [CrossRef] [Google Scholar]
  • Cook C.D.K, 1990. Aquatic Plant, SPB-Academic Publishing, The Netherlands. [Google Scholar]
  • Farnsworth L. andBaker L.A., 2000. Conceptual model of aquatic plant decay and ammonia toxicity for shallow lakes. J. Environ. Eng., 126, 199–207. [CrossRef] [Google Scholar]
  • Geneviève M.C., Duthie H.C. and Taylor W.D., 1997. Models of aquatic plant productivity : a review of the factors that influence growth. Aquat. Bot., 59 (3-4), 195–215. [CrossRef] [Google Scholar]
  • Gerendas J., Zhu Z., Bendixen R., Ratcliffe R.G. andSattelmacher B., 1997. Physiological and biochemical processes related to ammonium toxicity in higher plants. Z. Pflanzenernaehr. Bodenkd, 160, 239–251. [CrossRef] [Google Scholar]
  • GonzalesSagrario M.A., Jeppesen E., Gomà J., Søndergaard M., Lauridsen T. andLandkildehus F., 2005. Does high nitrogen loading prevent clear-water conditions in shallow lakes at moderately high phosphorus concentrations? Freshw. Biol., 50, 27–41. [CrossRef] [Google Scholar]
  • Goyal A., Lilley R.C. and Brown A.D., 1986. Osmoregulation in Dunaliella : relative contribution of photosynthesis and starch breakdown to glycerol biosynthesis during a salt stress in light. In : Kon O.L., Chung M.E.M., Hwang L.H., Leong S.P., Loke K.H., Thiyagarajah P. and Wong T.H. (eds.), Contemporary Themes in Biochemistry, Cambridge University Press, Cambridge, 6, 336–337. [Google Scholar]
  • Harlin M.M. andThorne-Miller B., 1981. Nutrient enrichment of seagrass beds in a Rhode Island coastal lagoon. Mar. Biol., 65, 221–229. [CrossRef] [Google Scholar]
  • Jeppesen E., Søndergaard M., Meerhoff M., Lauridsen T.L. andJensen J.P., 2007. Shallow lake restoration by nutrient loading reduction-some recent findings and challenges ahead. Hydrobiologia, 584, 239–252. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kubín P. andMelzer A., 1996. Does ammonium affect accumulation of starch in rhizomes of Phragmites australis (Cav.) Trin ex Steud? Folia Geobot. Phytotaxon., 31, 99–109. [CrossRef] [Google Scholar]
  • Linkohr B.I., Williamson L.C., Fitter A.H. andLeyser H.M.O., 2002. Nitrogen and phosphorus availability and distribution have different effects on root system architecture of Arabidopsis. Plant J., 29, 751–760. [CrossRef] [PubMed] [Google Scholar]
  • Lloyd J.R., Kossmann J. andRitte G., 2005. Leaf starch degradation comes out of the shadows. Trends Plant Sci., 10, 130–137. [CrossRef] [PubMed] [Google Scholar]
  • Longstreth D.J. andNobel P.S., 1980. Nutrient influence on leaf photosynthesis : effects of nitrogen, phosphorus, and potassium for Gossypium hirsutum L. Plant Physiol., 65, 541–543. [CrossRef] [PubMed] [Google Scholar]
  • López-Bucio J., Cruz-Ramÿrez A. andHerrera-Estrella L., 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol., 6, 280–287. [CrossRef] [PubMed] [Google Scholar]
  • Madsen T.V. andCedergreen N., 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrientrich river. Freshw. Biol., 47, 283–291. [CrossRef] [Google Scholar]
  • Marschner H., 1998. Mineral Nutrition of Higher Plant, Academic Press, London, 232–242. [Google Scholar]
  • Mehrer I. andMohr H., 1989. Ammonium toxicity-description of the syndrome in Synapis alba and the search for its causation. Plant Physiol., 77, 545–554. [CrossRef] [Google Scholar]
  • Melzer A., 1999. Aquatic macrophytes as tools for lake management. Hydrobiologia, 395/396, 181–190. [CrossRef] [Google Scholar]
  • Middleboe A.L. andMarkager S., 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshw. Biol., 37, 553–568. [CrossRef] [Google Scholar]
  • Murray L., Dennison W.C. andKemp W.M., 1992. Nitrogen versus phosphorus limitation for growth of an estuarine population of eelgrass (Zostera marina L.). Aquat. Bot., 44, 83–100. [CrossRef] [Google Scholar]
  • Nagao M., Minami A., Arakawa K., Fujikawa S. andTakezawa D., 2005. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens, J. Plant Physiol., 162, 169–180. [CrossRef] [PubMed] [Google Scholar]
  • Ni L.Y., 2001. Effects of water column nutrient enrichment on the growth of Potamogenton maackianus A. been. J. Aquat. Plant Manage., 39, 83–87. [Google Scholar]
  • [OECD] Organization for Economic Co-operation and Development, 1982. Eutrophication of waters : monitoring, assessment and control, OECD, Paris, 1–154. [Google Scholar]
  • Perrow M.R., Moss B. and Stansfield J., 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading : a long-term study. Hydrobiologia, 275/276, 43–52. [CrossRef] [Google Scholar]
  • Phillips G.L., Eminson D. andMoss B., 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot., 4, 103–126. [CrossRef] [Google Scholar]
  • Qin B.Q., Gao G., Hu W.P., Wu Q.L., Hu C.H., Liu Z.W., Gu X.H., Zhu G.W. andChen F.Z., 2005. Reflections on the theory and practice of shallow lake ecosystem restoration. J. Lake Sci., 17, 9–16. [Google Scholar]
  • Ralph P.J., 1999. Photosynthetic response of Halophila ovalis (R. Br.) Hook. f. to combined environmental stress. Aquat. Bot., 65, 83–96. [CrossRef] [Google Scholar]
  • Rattray M.R., Howard-Williams C. andBrown J.M.A., 1991. Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes. Aquat. Bot., 40, 225–237. [CrossRef] [Google Scholar]
  • Rea N., Dostine P., Cook C., Webster I. and Williams D., 2003. Environmental water requirements of Vallisneria nana in the Daly River, Northern Territory, A Report to Environment Australia, Canberra. [Google Scholar]
  • Robe W.E. andGriffiths H., 1994. The impact of NO-3 loading on the freshwater macrophyte Littorella uniflora : N utilization strategy in a slow-growing species from oligotrophic habitats. Oecologia, 100, 368–378. [CrossRef] [PubMed] [Google Scholar]
  • Roberts E., Kroker J., Korner S. andNicklisch A., 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia, 506–509, 525–530. [CrossRef] [Google Scholar]
  • Sand-Jensen K., 1977. Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot., 3, 55–63. [CrossRef] [Google Scholar]
  • Sand-Jensen K., 1989. Environmental variables and their effect on photosynthesis of aquatic plant communities. Aquat. Bot., 34, 5–25. [CrossRef] [Google Scholar]
  • Sand-Jensen K. andBourm J., 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat. Bot., 41, 137–175. [CrossRef] [Google Scholar]
  • Short F.T., 1987. Effects of sediment nutrients on seagrasses : literature review and mesocosm experiment. Aquat. Bot., 27, 41–57. [CrossRef] [Google Scholar]
  • Smolder A., van Gestel C.B.L. andRoelofs J.G.M., 1996. The effects of ammonium on growth, accumulation of free aminoacids and nutritional status of young phosphorus deficient Stratiotes aloides plants. Aquat. Bot., 53, 85–96. [CrossRef] [Google Scholar]
  • Terrados J., Duarte C.M., Nielsen L.K., Agawin N.S.R., Gacia E., Lacap D., Fortes M.D., Borum J., Lubanski M. andGreve T., 1999. Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat. Bot., 65, 175–197. [CrossRef] [Google Scholar]
  • Tracy M., Montante J.M., Allenson T.E. andHough R.A., 2003. Long-term responses of aquatic macrophyte diversity and community structure to variation in nitrogen loading. Aquat. Bot., 77, 43–52. [CrossRef] [Google Scholar]
  • Tylová-Munzarová E., Lorenzen B., Brix H. andVotrubová O., 2005. The effects of NH+4 and NO-3 on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquat. Bot., 81, 326–342. [CrossRef] [Google Scholar]
  • Van Kooten O. andSnel J.F.H., 1990. The use of chlorophyll fluorescence momenclature in plant stress physiology. Photosynth. Res., 25, 147–150. [CrossRef] [PubMed] [Google Scholar]
  • Van Lent F., Verschuure J.M. and van Veghel M.L.J., 1995. Comparative study on populations of Zostera marina L. (eelgrass) : in situ nitrogen enrichment and light manipulation. J. Exp. Mar. Biol. Ecol., 185, 55–76. [CrossRef] [Google Scholar]
  • Visser E.J.W., Nabben R.H.M., Blom C.W.P.M. andVoesenek L.A.C.J., 1997. Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations. Plant Cell Environ., 20, 647–653. [CrossRef] [Google Scholar]
  • Wang J.W. andYu D., 2007. Influence of sediment fertility on morphological variability of Vallisneria spiralis L. Aquat. Bot., 87, 127–133. [CrossRef] [Google Scholar]
  • Wen M.Z., Zheng Y.F. andWu R.J., 2008. Effects of TN : TP ratio in eutrophic water on the growth of Vallisneria spiralis. Chin. J. Ecol., 27, 414–417. [Google Scholar]
  • Westwood J.H. andFoy C.L., 1999. Influence of nitrogen on germination and early development of broomrape (Orobanche spp.). Weed Sci., 47, 2–7. [Google Scholar]
  • Xie Y.H., An S.Q., Yao X., Xiao K.Y. andZhang C., 2005. Short-time response in root morphology of Vallisneria natans to sediment type and water-column nutrient. Aquat. Bot., 81, 85–96. [CrossRef] [Google Scholar]
  • Zhang Z.H., Zed R. andKathy M., 2008. Interactive effects of N and P on growth but not on resource allocation of Canna indica in wetland microcosms. Aquat. Bot., 89, 317–323. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.