Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 403, 2011
Article Number 03
Number of page(s) 11
Published online 03 August 2011
  • Aitkenhead J.A. and McDowell W.H., 2000. Soil C:N ratio as a predictor of annual riverine DOC flux at local and glob. scales. Glob. Biogeochem. Cycles, 14, 127–138. [CrossRef] [Google Scholar]
  • Avnimelech Y., 1983. Phosphorus and calcium carbonate solubilities in Lake Kinneret. Limnol. Oceanogr., 28, 640–645. [CrossRef] [Google Scholar]
  • Brönmark C. and Hansson L.A., 2005. The Biology of Lakes and Ponds, Oxford University Press. [Google Scholar]
  • Cajo J.F. and ter Braak C.J.F., 1997–2003. Biometris – Plant Research International, version 4.52, Wageningen, The Netherland. [Google Scholar]
  • Cajo J.F., ter Braak C.J.F. and Šmilauer P., 2002. CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5), Microcomputer Power, Ithaca, New York, USA. [Google Scholar]
  • Canham C.D., Pace M.L., Papaik M.J., Primack A.G.B., Roy K.M.R., Maranger R.J., Curran R.P. and Spada D.M., 2004. A spatially explicit watershed-scale analysis of dissolved organic carbon in Adirondack lakes. Ecol. Appl., 14, 839–854. [CrossRef] [Google Scholar]
  • Curtis P.J., 1998. Climatic and hydrologic control of DOM concentration and quality in lakes. Ecological Studies, 133, 93–105. [Google Scholar]
  • del Giorgio P.A. and Peters R.H., 1994. Patterns in planktonic P:R ratios in lakes: influence of lake trophy and dissolved organic carbon. Limnol. Oceanogr., 39, 772–787. [CrossRef] [Google Scholar]
  • Dillon P.J. and Molot L.A., 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry, 36, 29–42. [CrossRef] [Google Scholar]
  • Dunalska J., 2009. Variability of organic carbon forms in lake ecosystems of varying trophic state, Wyd. UWM (in Polish). [Google Scholar]
  • Dunalska J., Brzozowska R., Zdanowski B., Stawecki K. and Pyka J., 2006. Variability of organic carbon, nitrogen and phosphorus in the context of lake dejguny eutrophication (Mazurskie Lakes District). Limnological Review, 6, 79–86. [Google Scholar]
  • Forsberg C., 1989. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiol., 176/177, 263–277. [CrossRef] [Google Scholar]
  • Gasith A. and Hasler A.D., 1976. Airborne litterfall as a source of organic matter in lakes. Limnol. Oceanogr., 21, 253–258. [Google Scholar]
  • Gergel S.E., Turner M.G. and Kratz T.K., 1999. Dissolved organic carbon as a indicator of the scale of watershed influence on lakes and rivers. Ecol. Appl., 9, 1377–1390. [CrossRef] [Google Scholar]
  • Håkanson L., 2005. The Importance of Lake Morphometry for the Structure and Function of Lakes. Internat. Rev. Hydrobiol., 90, 433–461. [Google Scholar]
  • Hanson P.C., Pollard A.I., Bade D.I., Predick K., Carpenter S.R. and Foley J.A., 2004. A model of carbon evasion and sedimentation in temperate lakes. Glob. Chang. Biol., 10, 1285–1298. [CrossRef] [Google Scholar]
  • Hanson P.C., Stephen R., Carpenter S.R., Cardille J.A., Coe M.T. and Winslow L.A., 2007. Small lakes dominate a random sample of regional lake characteristics. Fresh. Biol., 52, 814–822. [CrossRef] [Google Scholar]
  • Hill M.O. and Gauch H.G., 1980. Detrended Correspondence analysis: an improved ordination technique. Vegetatio 42, 47–58. [CrossRef] [Google Scholar]
  • Hillbricht-Ilkowska A., 1993. Temperate freshwater ecotones: problem with seasonal instability. [w:] B. Gopal, A. Hillbricht-Ilkowska, R.G. Wetzel (red.), Wetland and Ecotones: Studies on Land-Water Interactions, National Institute of Ecology, New Delphi, 13–34. [Google Scholar]
  • Houle D., Carignan R., Lachance M. and Dupont J., 1995. Dissolved organic carbon and sulfur in southwestern Quebec lakes: Relationships with catchment and lake properties. Limnol. Oceanogr., 40, 710–717. [CrossRef] [Google Scholar]
  • Höhener P. and Gächter R., 1994. Nitrogen cycling across the sediment-water interface in a eutrophic, artificially oxygenated lake. Aquat. Sci., 65, 115–132. [CrossRef] [Google Scholar]
  • Hygum B.H., Petersem J.W. and Sondergaard M., 1997. Dissolved organic carbon released by zooplankton grazing activity – a high-quality substrate pool for bacteria. J. Plankton Res., 19, 97–111. [CrossRef] [Google Scholar]
  • Jongman R.H.G., ter Braak C.J.F. and van Tongeren O.F.R., 1995. Data analysis in community and landscape ecology, Cambridge University Press, Cambridge. [Google Scholar]
  • Kankaala P., Arvola L., Tulonen T. and Ojala A., 1996. Carbon budget for the pelagic food web of the euphotic zone in a boreal lake (Lake Pääjärvi). Can. J. Fish. Aquat. Sci. 53, 1663–1674. [CrossRef] [Google Scholar]
  • Klug J.L., 2002. Positive and negative effects of allochthonous dissolved organic matter and inorganic nutrients on phytoplankton growth. Can. J. Fish. Aquat. Sci. 59, 85–95. [CrossRef] [Google Scholar]
  • Kortelainen P., 1993. Content of organic carbon in Finnish lakes and its relationship to catchment characteristics. Can. J. Fish. Aquat. Sci., 50, 1477–1483. [CrossRef] [Google Scholar]
  • Kritzberg E.S., Cole J.J., Pace M.L., Granéli W. and Bade D.L., 2004. Autochthonous and allochthonous carbon sources to bacteria: Results from whole lake 13C addition experiments. Limnol. Oceanogr., 49, 588–596. [Google Scholar]
  • Mei Z.-P., Legendre L., Tremblay J.-É, Miller L.A., Gratton Y., Lovejoy C., Yager P.L. and Gosselin M., 2005. Carbon to nitrogen (C:N) stoichiometry of the spring-summer phytoplankton bloom in the North Water Polynya (NOW). Deep-Sea Res. I, 52, 2301–2314. [CrossRef] [Google Scholar]
  • Moran M.A., Sheldon W.M. and Zepp R.G., 2000. Carbon loss and optical property changes long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr., 45, 1254–1264. [CrossRef] [Google Scholar]
  • Nürnberg G.K., 1985. Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Arch. Hydrobiol., 104, 459–476. [Google Scholar]
  • Nürnberg G.K., 1994. Phosphorus release from anoxic sediments: What we know and how we can deal with it. Limnetica, 10, 1–4. [Google Scholar]
  • Pace M.L. and Cole J.J., 2002. Synchronous variation of dissolved organic carbon and color in lakes. Limnol. Oceanogr., 47, 333–342. [CrossRef] [Google Scholar]
  • Pullin M.J., Bertilsson S., Goldstone J.V. and Voelker B.M., 2004. Effects of sunlight and hydroxyl radial on dissolved organic matter: Bacterial growth efficiency and production of carboxylic acids and other substrates. Limnol. Oceanogr., 49, 2011–2022. [CrossRef] [Google Scholar]
  • Rasmussen J.B., Godbout L. and Schallenberg M., 1989. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr., 34, 1336–1343. [CrossRef] [Google Scholar]
  • Schwartz M.L., Curtis P.J. and Playle R.C., 2004. Influence of natural organic matter on acute copper, lead, and cadmium toxicity to rainbow trout (Oncorhynchus Mykiss). Environ. Toxicol. Chem., 23, 2889–2899. [CrossRef] [PubMed] [Google Scholar]
  • Shaw P.J., Jones R.I. and de Haan H., 2000. The influence of humic substances on the molecular weight distributions of phosphate and iron in epilimnetic lake waters. Freshw. Biol., 45, 383–393. [CrossRef] [Google Scholar]
  • Søndergaard M., Williams P.J.B., Cauwet G., Riemann B., Robinson C., Terzic S., Woodward E.M.S. and Worm J., 2000. Net accumulation and flux of dissolved organic carbon and dissolved organic nitrogen in marine plankton communities. Limnol. Oceanogr., 45, 1097–1111. [CrossRef] [Google Scholar]
  • Standard Methods for examination of water and wastewater, 1999. Am. Publ. Health ASN., New York. [Google Scholar]
  • Symons J.M. and Zheng M.C.H., 1996. Behavior of natural organic matter during hydroxyl raduical oxidation. Natural Organic Matter Workshop, Poitiers – France, 26. [Google Scholar]
  • Tranvik K., 1992. Allochtonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia, 229, 107–114. [CrossRef] [Google Scholar]
  • Tranvik L.J. and Jansson M., 2002. Climate change – terrestrial export of organic carbon. Nature, 415, 861–862. [CrossRef] [Google Scholar]
  • Tulonen T., 2004. Role of allochthonous and autochthonous dissolved organic matter (DOM) as a carbon source for bacterioplancton in boreal humic lakes, University of Helsinki, Finland. [Google Scholar]
  • Wetzel R.G., 2001. Limnology. Lake and River Ecosystems, Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo. [Google Scholar]
  • Williamson C.E., Morris D.P., Pace M.L. and Olson O.G., 1999. Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnol. Oceanogr., 44, 795–803. [Google Scholar]
  • Xenopoulos M.A., Lodge D.M., Frentress J., Kreps T.A., Bridgham S.D., Grossman E. and Jackson C.J., 2003. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol. Oceanogr., 48, 2321–2334. [CrossRef] [Google Scholar]
  • Zdanowski B., 2003. Precipitation of phosphorus in the zone of river and lake water mixing: river Czarna Hańcza and Lake Wigry (North-East Poland). Polish Journal of Ecology, 51, 143–154. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.