Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 08
Number of page(s) 17
Section Eco-Hydro 2010
Published online 21 October 2011
  • Arnosti C. and Holmer M., 2003. Carbon cycling in a continental margin sediment: contrasts between organic matter characteristics and reminaralization rates and pathways. Estuar. Coast. Shelf S., 58, 197–208. [CrossRef] [Google Scholar]
  • Benedetti-Cecchi L., 2004. Experimental design and hypothesis testing in ecology. Biologia Marina Mediterranea, 11, 407–455. [Google Scholar]
  • Bligh E.G. and Dyer W., 1959. Rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917. [CrossRef] [PubMed] [Google Scholar]
  • Cebrián J., Williams M., McClelland J. and Valiela I., 1998. The dependence of heterotrophic consumption and C accumulation on autotrophic nutrient concentration in ecosystems. Ecol. Lett., 1, 165–170. [CrossRef] [Google Scholar]
  • Clarke K.R. and Warwick R.M., 2001. Change in marine communities: an approach to statistical analysis and interpretation, 2nd Edition, Primer-E, Plymouth. [Google Scholar]
  • Cochran W.G., 1977. Sampling techniques, 3rd Edition, Wiley & Sons, New York. [Google Scholar]
  • Cornwell J.C., Conley D.J., Owens M. and Stevenson J.C., 1996. A sediment chronology of the eutrophication of Chesapeake Bay. Estuaries, 19, 488–499. [CrossRef] [Google Scholar]
  • Danovaro R., Marrale D., Della Croce N., Parodi P. and Fabiano M., 1999. Biochemical composition of sedimentary organic matter and bacterial distribution in the Aegean Sea: trophic state and pelagic-benthic coupling. J. Sea Res., 42, 117–129. [CrossRef] [Google Scholar]
  • Dell’Anno A., Mei M.L., Pusceddu A. and Danovaro R., 2002. Assessing the trophic state and eutrophication of coastal marine systems: a new approach based on the biochemical composition of sediment organic matter. Mar. Pollut. Bull., 44, 611–622. [CrossRef] [PubMed] [Google Scholar]
  • Den Hartog C., 1994. Suffocation of a littoral Zostera bed by Enteromorpha Radiata. Aquat. Bot., 47, 21–28. [CrossRef] [Google Scholar]
  • Di Nigel T.F., 2002. Methods in agricultural chemical analysis: a practical handbook, CABI, 266 p. [Google Scholar]
  • Duarte C.M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia, 41, 87–112. [Google Scholar]
  • Dubois M., Gilles K., Hamilton J.K., Rebers P.A. and Smith F., 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem., 28, 350–356. [Google Scholar]
  • Fabiano M., Danovaro R. and Fraschetti S., 1995. A three-year time series of elemental and biochemical composition of organic matter in subtidal sandy sediments of the Ligurian Sea (northwestern Mediterrenean). Cont. Shelf. Res., 15, 1453–1469. [CrossRef] [Google Scholar]
  • Farias L., 2003. Remineralization and accumulation of organic carbon and nitrogen in marine sediments of eutrophic bays: the case of bay of concepcion, Chile. Estuar. Coast. Shelf S., 57, 829–841. [CrossRef] [Google Scholar]
  • Gerchakov S.M. and Hatcher P.G., 1972. Improved technique for analyses of carbohydrates in sediments. Limnol. Oceanogr., 17, 938–943. [CrossRef] [Google Scholar]
  • Golterman H.L., 2001. Phosphate release from anoxic sediments or “what did Mortimer really write?”. Hydrobiologia, 450, 99–106. [CrossRef] [Google Scholar]
  • Gray J.S., Wu R.S.S. and Or Y.Y., 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Mar. Ecol. Prog. Ser., 238, 249–279. [CrossRef] [Google Scholar]
  • Gudasz C., Bastviken D., Steger K., Premke K., Sobek S. and Tranvik L.J., 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature, 466, 478–481. [CrossRef] [PubMed] [Google Scholar]
  • Hartree E.F., 1972. Determination of proteins: modification of the Lowry methods that give a linear photometric response. Anal. Biochem., 48, 422–427. [CrossRef] [PubMed] [Google Scholar]
  • Heijs S.K., Azzoni R., Giordani G., Jonkers H.M., Zizzoli D., Viaroli P. and Gemerden H., 2000. Sulphide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp. Aquat. Microb. Ecol., 23, 85–95. [CrossRef] [Google Scholar]
  • Hopkinson Jr. C.S., 1985. Shallow-water benthic and pelagic metabolism: evidence of heterotrophy in the near shore Georgia bight. Mar. Biol., 87, 19–32. [CrossRef] [Google Scholar]
  • Jørgensen B.B., 1983. The microbial sulphur cycle. In: Krumbein W. (ed.), Microbial Geochemistry, Blackwell Scientific Publications, Oxford, 91–124. [Google Scholar]
  • Lenzi M., 2010. Resuspension of sediment as a method for managing shallow eutrophic lagoons. Journal of Ecology and the Natural Environment, 2, 220–234. ISSN 2006-9847 ©2010, [Google Scholar]
  • Lenzi M., 2011. Resuspension of sediment as a possible environmental management method for coastal lagoons and aquaculture ponds. J. Aquac. Res. Development, 2, 104e. doi: 10.4172/2155-9546.1000104e ( [Google Scholar]
  • Lenzi M., Porrello S. and Palmieri R., 2003. Restoration of the eutrophic Orbetello lagoon (Tyrrhenian Sea, Italy): water quality management. Mar. Pollut. Bull., 46, 1540–1548. [Google Scholar]
  • Lenzi M., Finoia M.G., Persia E., Comandi S., Gargiulo V., Solari D., Gennaro P. and Porrello S., 2005. Biogeochemical effects of disturbance in shallow water sediment by macroalgae harvesting boats. Mar. Pollut. Bull., 50, 512–519. [CrossRef] [PubMed] [Google Scholar]
  • Lenzi M., Birardi F., Calzolai R., Finoia M.G., Marcone F., Nocciolini S., Roffilli R., Sgroi S., and Solari D., 2010. Hypertrophic lagoon management by sediment disturbance. Mar. Pollut. Bull. (Issue 4-6, Estuarine Ecosystems: Structure, Function and Management - ECSA-42 Symposium in Russia), 61, 189–197. [CrossRef] [PubMed] [Google Scholar]
  • Logan B.E. and Kirchman D.L., 1991. Uptake of dissolved organics by main bacteria as a function of fluid motion. Mar. Biol., 111, 175–181. [CrossRef] [Google Scholar]
  • Loh P.S., 2005. An assessment of the contribution of terrestrial organic matter to total organic matter in sediments in Scottish sea lochs, Ph.D. thesis, UHI Millenium Institute, 350 p. [Google Scholar]
  • Lorentzen C.J. and Jeffrey S.W., 1980. Determination of chlorophyll and phaeopigments spectrophotometric equation. Limnol. Oceanogr., 12, 343–346. [Google Scholar]
  • Marsh J.B. and Weinstein D.B., 1966. A simple charring method for determination of lipids. J. Lipid Res., 7, 574–576. [PubMed] [Google Scholar]
  • Middelburg J., Nieuwenhuize J. and van Breugel P., 1999. Black carbon in marine sediments. Mar. Chem., 65, 245–252. [CrossRef] [Google Scholar]
  • Morand P. and Briand X., 1996. Excessive Growth of Macroalgae: A Sympton of Environmental Disturbance. Bot. Mar., 39, 491–516. [Google Scholar]
  • Pusceddu A., Dell’Anno A. and Fabiano M., 2000. Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Pol. Biol., 23, 288–293. [CrossRef] [Google Scholar]
  • Pusceddu A., Dell’Anno A., Danovaro R., Marini E., Sarà G. and Fabiano M., 2003. Enzymatically hydrolysable protein and carbohydrate sedimentary pools as indicators of the trophic state of “detritus sink” systems: a case study in a Mediterranean coastal lagoon. Estuaries, 26, 641–650. [CrossRef] [Google Scholar]
  • Pusceddu A., Grémare A., Escoubeyrou K., Amoroux J.M., Fiordelmondo C. and Danovaro R., 2005. Impact of natural (storm) and anthropogenic (trawling) sediment resuspension on particulate organic matter in coastal environments. Cont. Shelf Res., 25, 2506–2520. [CrossRef] [Google Scholar]
  • Pusceddu A., Dell’Anno A., Fabiano M. and Danovaro R., 2009. Quantity and bioavaillability of sediment organic matte ras signatures of benthic trophic status. Mar. Ecol. Prog. Ser., 375, 41–52. [CrossRef] [Google Scholar]
  • Raffaelli D.G., Raven J.A. and Poole L.J., 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology: an Annual Review, 36, 97–125. [Google Scholar]
  • Sampou P. and Oviatt C.A., 1991. Seasonal patterns of sedimentary carbon and anaerobic respiration along a simulated eutrophication gradient. Mar. Ecol. Prog. Ser., 72, 271–282. [CrossRef] [Google Scholar]
  • Stahlberg C., Bastviken D., Svensson B.H. and Rahm L., 2006. Mineralisation of organic matter in coastal sediment at different frequency and duration of resuspension. Estuar. Coastal Shelf Sci., 70, 317–325. [CrossRef] [Google Scholar]
  • Tanaka K. and Kodama M., 2007. Effects of resuspended sediments on the environmental changes in the inner part of Ariake Bay, Japan. Bulletin of Fisheries Research Agency, 19, 9–15. [Google Scholar]
  • Tengberg A., Almroth E. and Hall P., 2003. Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology. J. Exp. Mar. Biol. Ecol., 285–286, 119–142. [CrossRef] [Google Scholar]
  • Tenore K.R., Kammen L., Findlay S.E.G. and Phillips N., 1982. Perspective of research on detritus: do factors controlling the availability of detritus to macroconsumers depends on its source? J. Mar. Res., 40, 473–489. [Google Scholar]
  • Underwood A.J., 1992. Beyond BACI: The detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol., 161, 145–178. [CrossRef] [Google Scholar]
  • Underwood A.J., 1993. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Australian Journal of Ecology, 18, 99–116. [Google Scholar]
  • Valiela I., MacLelland J., Hauxwell J., Beher P.J., Hersh D. and Foreman K., 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr., 42, 1105–1118. [CrossRef] [Google Scholar]
  • Wainright S.C., 1990. Sediment-to-water fluxes of particulta material and microbes by resuspension and their contribution to the planktonic food web. Mar. Ecol. Prog. Ser., 62, 271–281. [CrossRef] [Google Scholar]
  • Wainright S.C. and Hopkinson Jr. C.S., 1997. Effects of sediment resuspension on organic matter processing in coastal environments: a simulation model. J. Mar. Syst., 11, 353–368. [CrossRef] [Google Scholar]
  • Wang Q. and Li Y., 2010. Optimizing the weight-loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources. Environ. Monitor. Assess., 17, DOI 10.1007/s10661-010-1454-z. [Google Scholar]
  • WWF-Italia, 1993. Multidisciplinary study for the protection of the aquatic ecosystem of Burano Lake (GR), WWF-Italy and Italian Ministry of Environment (MATT), 242 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.