Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 09
Number of page(s) 15
Section Eco-Hydro 2010
DOI https://doi.org/10.1051/kmae/2011066
Published online 16 November 2011
  • Anderson N.J., Bennike O., Christoffersen K., Jeppesen E., Markager S., Miller G. and Renberg I., 1999. Limnological and palaeolimnologicalstudies of lakes in south-western Greenland. Geology of Greenland Survey Bulletin, 183, 68–74. [Google Scholar]
  • Appleby P.G., 2001. Chronostratigraphic techniques in recent sediments. In: Smol I.P. (ed.), Tracking Environmental Changes Using Lake Sediments, Vol. 1, Basin Analysis, Coring, and Chronological Techniques, Kluwer Academic Publishers, Dordrecht, 1771–203. [Google Scholar]
  • Birks H.J.B., 2003. Quantitative palaeoenvironmental reconstructions from Holocene biological data. In: Mackay A., Battarbee R., Birks H.J.B. and Oldfield F. (eds.), Global Change in the Holocene, Erwin Arnold, London, 107–123. [Google Scholar]
  • Brodersen K.P. and Anderson N.J., 2000. Subfossil insect remains (Chironomidae) and lake-water temperature inference in the Sisimiut-Kangerlusuanq region, southern West Grenland. Geology of Greenland Survey Bulletin, 186, 78–82. [Google Scholar]
  • Flössner D., 1972. Branchiopoda, Branchiura. Die Tierwelt Deutschlands, 60, 1–501. [Google Scholar]
  • Flössner D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas, Backhuys Oublisher, Leiden, The Nethrlands. [Google Scholar]
  • Frey D.G., 1986. Cladocera analysis. In: Berglund B.E. (ed.), Handbook of Holocene palaeoecology and palaeohydrology, Wiley Chichster, UK, 667–692. [Google Scholar]
  • Galbarczyk-Gąsiorowska L., Gąsiorowski M. and Szeroczyñska K., 2009. Reconstruction of human influence on two small oxbow lakes. Hydrobiologia, 631, 173–183. [CrossRef] [Google Scholar]
  • Hakala A., Sarmaja-Korjonen K. and Miettinen A., 2004. The origin and evolution of Lake Vähä-Pitkusta, SW Finland – multi-proxy study of a meromictic lake. Hydrobiologia, 527, 85–97. [CrossRef] [Google Scholar]
  • Hessen D.O. and Walseng B., 2008. The rarity concept and the commonness of rarity in freshwater zooplankton. Freshw. Biol., 53, 2026–2035. [CrossRef] [Google Scholar]
  • Hofmann W., 1996. Empirical relationship between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia, 318, 195–201. [CrossRef] [Google Scholar]
  • Jankovska V., 2007. Composition of pollen spectra from surface samples produced by present-day vegetation of boreal zone eastern from Polar Urals Mts (Russia). In: Križova A. and Ujhazy K. (eds.), Dynamic and stability of forest ecosystems, Technical Univ. Zvolen, 85–88. [Google Scholar]
  • Jankovska V. and Komarek J., 2000. Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot., 35, 59–82. [CrossRef] [Google Scholar]
  • Kamenick Ch., Szeroczyñska K. and Schmidt R., 2007. Relationships among recent Alpine Cladocera remains and their environment – implications for climate-change studies. Hydrobiologia, 594, 33–46. [CrossRef] [Google Scholar]
  • Komarek J. and Jankovska V., 2001. Review of the green algal genus Pediastrum; implication for pollen- analytical research. Bibliotheca Phycologica, 108, 1–127. [Google Scholar]
  • Korhola A., 1999. Distribution patterns of Cladocera in subartic Fennoscandian lakes and their potential in environmental reconstruction. Ecography, 22, 357–373. [CrossRef] [Google Scholar]
  • Korhola A. and Rautio M., 2001. Cladocera and other branchiopod crustaceans. In: Smol J.P., Birks H.J.B., and Last W.M. (eds.), Tracking Environmental Change Using Lake Sediments, Zoological Indicators, 4, Kluwer Academic Publishers, Dordrecht, 541 p. [Google Scholar]
  • Krause-Dellin D. and Steinberg C., 1986. Cladoceran remains as indicators of lake acidification. Hydrobiologia, 143, 129–134. [CrossRef] [Google Scholar]
  • Kuusisto E., 1986. Jaaolot. Teoksessa Karlsson K.-P. (toim), Vedet. Suomen kartasto 132, Maanmittaushallitus ja Suomen Maantieteellinen Seura, Helsinki, 18. [Google Scholar]
  • Lauridsen T., Jeppesen E., Landkildehus F. and Sondergaard M., 2001. Horizontal distribution of cladocerans in arctic Greenland lakes – impact of macrophytes and fish. Hydrobiologia, 442, 107–116. [CrossRef] [Google Scholar]
  • Milecka K., 2005. History of Lobelia lakes in W Tuchola Pinewoods on the background of post-glacial forest development. Wydawnictwo Naukowe UAM (Adam Mickiewicz University Press), Poznañ, Seria. Geografia, 71, 1–249. [Google Scholar]
  • Milecka K. and Szeroczyñska K., 2005. Changes in macrophytic flora and planktonie organisms In Lake Ostrowite, Poland, as a response to climatic and trop hic fluctuations. The Holocene, 15, 74–84. [CrossRef] [Google Scholar]
  • National Board of Survey, 1987. Atlas of Finland Folio 131, Climate, 32 p. [Google Scholar]
  • Nevalainen L., 2009. Autumnal chydorid fauna (Anomopoda, Chydoridae) in Kevo region, northern Finnish Lapland. Kevo Notes, 13, 1–20. [Google Scholar]
  • Rautio M., Sorvari S. and Korhola A., 2000. Diatom and crustacean zooplankton communities, their seasonal variability and representation in the sediments of subartic Lake Saanajärvi. In: Lami A., Cameron N. and Korhola A. (eds.), Paleolimnology and ecosystem dynamics at remote European Alpine Lakes. (Suppl. 1). J. Limnol., 59, 81–96. [Google Scholar]
  • Sarmaja-Korjonen K. and Hyvärinen H., 1999. Cladoceran and diatom stratigraphy of calcareous lake sediments from Kuusamo, NE Finland, Indications of Holocene lake-level changes. Fennia, 177, 55–70. [Google Scholar]
  • Sarmaja-Korjonen K. and Seppä H., 2007. Abrupt and consistent responses of aquatic and terrestrial ecosystems to the 8200 cal. yr cold event: a lacustrine record from Lake Arapisto, Finland. The Holocene, 17, 457–467. [CrossRef] [Google Scholar]
  • Sarmaja-Korjonen K. and Sinev A.Y., 2008. First records of Alona werestschagini Sinev in Finland – subfossilremains fromsubartic lakes. Studia Quaternaria, 25, 43–46. [Google Scholar]
  • Sarmaja-Korjonen K., Nyman M., Kultti S. and Valiränta M., 2006. Palaeolimnological development of Lake Njargajarvi, northern Finnish Lapland, in a changing Holocene climate and environment. J. Paleolimnol., 35, 65–81. [CrossRef] [Google Scholar]
  • Simula S.K. and Lahti K., 2005. National Parks Oulaka and Paanajärvi – a natural history and tour guide, Metsähallitus Natural Heritage Services, Ostrobothnia-Kainuu. [Google Scholar]
  • Smol J.P. and Douglas M.S.V., 2007. From controversy to consensus: making the case for recent climatic change in the Arctic using lake sediments. Front. Ecol. Environ., 5, 466–474. [CrossRef] [Google Scholar]
  • Smol J.P., Wolfe A.P., Birks H.J., Douglas M.S., Jones V.J., Korhola A., Pienitz R., Rühland K., Sorvari S., Antoniades D., Brooks S.J., Fallu M.A., Hughes M., Keatley B.E., Laing T.E., Michelutti N., Nazarova L., Nyman M., Paterson A.M., Perren B., Quinlan R., Rautio M., Saulnier-Talbot E., Siitonen S., Solovieva N. and Weckstrom J., 2005. Climate-driven regime shifts in the biological communities of Arctic lakes. Proc. Nat. Acad. Sci. USA, 102, 4397–4402. [CrossRef] [Google Scholar]
  • Sorvari S., Rautio M., and Korhola A., 2000. Seasonal dynamics of the subarctic Lake Saanajärvi in FinnishLapland. Verh. Internat. Verein. Limnology, 27, 507–512. [Google Scholar]
  • Szeroczyñska K., 1998. Anthropogenic transformation of nine lakes in Central Poland from Mesolithic to modern times in the light of Cladocera analysis. Studia Geologica Polonica, 112, 123–165. [Google Scholar]
  • Szeroczyñska K., 2002. Human impact on lakes recorded in the remains of Cladocera (Crustacea). Quat. Int., 95/96, 165–174. [CrossRef] [Google Scholar]
  • Szeroczyñska K. and Sarmaja-Korjonen K., 2007. Atlas of Subfossil Cladocera from Central and Northern Europe, Friends of the Lower Vistula Society, 84 p. [Google Scholar]
  • Szeroczyñska K., Tatur A., Weckström J., Gasiorowski M., Noryśkiewicz A.M. and Sienkiewicz E., 2007. Holocene environmental history in northwest Finnish Lapland reflected in the multi-proxy record of small subarctic lake. J. Paleolimnol., 38, 25–47. [CrossRef] [Google Scholar]
  • Szmeja J., 1994. An individual’s status In populations of isoetids species. Aquat. Bot., 48, 203–224. [CrossRef] [Google Scholar]
  • Szmeja J., Banaś K. and Bociag K., 1997. Ecological conditions and tolerance limits of isoetids along the southern Baltic coast. Polish Journal of Ecology, 45, 343–359. [Google Scholar]
  • ter Braak C.J.F. and Šmilauer P., 2002. CANOCO reference manual and CanoDraw for Windows user’s guide software for cannonical community ordination (Version 4.5), Microcomputer Power, Ithaca, New York, USA. [Google Scholar]
  • Weckström K., Raussmussen P., Vad Odgaard B., Andersen Th.J., Virtanen T. and Olsen J., 2010. Recent changes in the nutrient status of a soft-water Lobelia lake, Hampen Sø, Denmark. Geological Survey of Denmark and Greenland Bulletin, 20, 43–46. [Google Scholar]
  • Zawisza E. and Szeroczyñska K., 2007. The development history of Wigry Lake as shown by subfossil Cladocera. Geochronometria, 27, 67–74. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.