Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 06
Number of page(s) 12
Section Eco-Hydro 2010
DOI https://doi.org/10.1051/kmae/2011049
Published online 28 July 2011
  • Bäck S., Anokhina L. and Dernjatin M., 2001. Massive occurences of Cladophora glomerata in the Gulf of Finland, Baltic Sea. In: Abstract Volume Baltic Sea Science Congress, Stockholm, 61 p. [Google Scholar]
  • Berezina N., Tsiplenkina I.G., Pankova E.S. and Gubelit J.I., 2007. Dynamics of invertebrate communities in stony littoral of the Neva estuary (Baltic Sea) under macroalgal blooms. Transit. Waters. Bull., 1, 49–60. [Google Scholar]
  • Berglund J., Mattila J., Rönnberg O., Heikkilä J. and Bonsdorff E., 2003. Seasonal and inter-annual variation in occurrence and biomass of rooted macrophytes and drift algae in shallow bays. Est. Coast. Shelf Sci., 56, 1167–1175. [CrossRef] [Google Scholar]
  • Blomqvist P., Petersson A. and Hyenstrand P., 1994. Ammonium-nitrogen: A key regulatory factor causing dominance of non-nitrogenfixing cyanobacteria in aquatic system. Arch. Hydrobiol., 132, 141–164. [Google Scholar]
  • Chorus I. and Wesseler E., 1988. Response of the phytoplankton community to the rapy measures in a highly eutrophic urban lake (Schlachtensee, Berlin). Verh. Internat. Vereinig. Limnol., 23, 719–728. [Google Scholar]
  • Edler L., 1979. Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists Publication, 5, 1–38. [Google Scholar]
  • Edmondson W.T. and Lehman J.T., 1981. The effect of changes in the nutrient income on the condition of Lake Washington. Limnol. Oceanogr., 26, 1–29. [CrossRef] [Google Scholar]
  • Eremina T.R. and Karlin L.N., 2008. Contemporary aspects of hydrochemical conditions in the eastern Gulf of Finland. In: Alimov A.F. and Golubkov S.M. (eds.), Ecosystem of the Neva Estuary: Biological Diversity and Ecological Problems, KMK, St. Petersburg-Moscow, 24–38 (in Russian). [Google Scholar]
  • Eriksson B.K. and Johansson G., 2005. Effects of sedimentation on macroalgae: species-specific responses are related to reproductive traits. Oecologia, 143, 438–448. [CrossRef] [PubMed] [Google Scholar]
  • Frumin G.T., 2008. Dynamics of nutrients in the Neva Bay from the runoff of the Neva River and its branches. In: Alimov A.F. and Golubkov S.M. (eds.), Ecosystem of the Neva Estuary: Biological Diversity and Ecological Problems, KMK, St. Petersburg-Moscow, 20–23 (in Russian). [Google Scholar]
  • Gobi Kh.Ya., 1879. A brief report on the trip undertaken in summer 1878 with algological purpose. Proceedings of St. Petersburg Society of naturalists, 10, 93–97 (in Russian). [Google Scholar]
  • Gobi Kh.Ya. and Grigoriev A.V., 1873. Preliminary report by Gobi K.Y. and Grigoriev A.V. on joint survey to northern shore of the Gulf of Finland in summer 1872 for algological researches. Proceedings of St. Petersburg Society of naturalists, 4, 122–138 (in Russian). [Google Scholar]
  • Golubkov S.M., Bäck S., Nikulina V.N., Orlova M.I., Anokhina L.E. and Umnova L.P., 2003. Effects of eutrophication and invasion of Dreissena polymorpha in the coastal zone of the eastern Gulf of Finland. Proc. Estonian Acad. Sci., 52, 284–304. [Google Scholar]
  • Golubkov M.S., Golubkov S.M. and Umnova L.P., 2008. Primary production and problems of eutrophication of the Neva estuary. In: Alimov A.F. and Golubkov S.M. (eds.), Ecosystem of the Neva Estuary: Biological Diversity and Ecological Problems, KMK, St. Petersburg-Moscow, 313–338 (in Russian). [Google Scholar]
  • Gubelit Yu.I., 2009. Biomass and primary production of Cladophora glomerata (L.) Kütz. in the Neva estuary. Inland Water Biol., 2, 300–304. [Google Scholar]
  • Gubelit Yu.I. and Berezina N.A., 2010. The causes and consequences of algal blooms: the Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Mar. Pollut. Bull., 61, 183–188. [CrossRef] [PubMed] [Google Scholar]
  • Gubelit Yu.I. and Kovalchuk N.A., 2010. Macroalgal blooms and species diversity in the Transition Zone of the eastern Gulf of Finland. Hydrobiologia, 656, 83–86. [CrossRef] [Google Scholar]
  • Kiirikki M. and Lehvo A., 1997. Life strategies of filamentous algae in the northern Baltic proper. Sarsia, 82, 259–267. [Google Scholar]
  • Kiselev I.A., 1924. Phytoplankton of Neva Bay and eastern part of the Gulf of Finland. In: Investigation of Neva River and its Basin, Part 2, Leningrad, 3–54 (in Russian). [Google Scholar]
  • Kovalchuk N.A., 2008. Biodiversity and the Current State of the Green, Brown and Red Macroalgae in the Russian Sea Area of the Gulf of Finland. In: Alimov A.F. and Golubkov S.M. (eds.), Ecosystem of the Neva Estuary: Biological Diversity and Ecological Problems, KMK, St. Petersburg-Moscow, 126–136 (in Russian). [Google Scholar]
  • Lauringson V. and Kotta J., 2006. Influence of the thin drift algal mats on the distribution of macrozoobenthos in Kõiguste Bay, NE Baltic Sea. Hydrobiologia, 554, 97–105. [CrossRef] [Google Scholar]
  • Lehvo A. and Bäck S., 2001. Survey of macroalgal mats in the Gulf of Finland, Baltic Sea. Aquatic Conservation Marine Freshwater Ecosystems, 11, 11–18. [CrossRef] [Google Scholar]
  • Makarova S.V., 1997. Species composition and quantity characteristics of phytoplankton. In: The Problems of Investigation and Mathematical Modeling of Baltic Sea Ecosystem, Part 5, Ecosystem models, Evaluation of modern conditions in the Gulf of Finland II, Hydrometeoizdat, St. Petersburg, 354–365 (in Russian). [Google Scholar]
  • Nikulina V.N., 1989. Blue-green algae in the eastern Gulf of Finland. Tr. Zool. Inst. Akad. Nauk SSSR, 205, 26–35 (in Russian). [Google Scholar]
  • Nikulina V.N., 2003. Seasonal dynamics of phytoplankton in the inner Neva Estuary in the 1980s and 1990s. Oceanologia, 45, 25–39. [Google Scholar]
  • Nikulina V.N., 2008. Phytoplankton of the Neva estuary. In: Alimov A.F. and Golubkov S.M. (eds.), Ecosystem of the Neva Estuary: Biological Diversity and Ecological Problems, KMK, St. Petersburg-Moscow, 76–96 (in Russian). [Google Scholar]
  • Norkko J.E., Bonsdorff E. and Norkko A., 2000. Drifting algal mats as an alternative habitat for benthic invertebrates. Species specific responses to a transient resource. J. Exp. Mar. Biol. Ecol., 248, 79–104. [CrossRef] [PubMed] [Google Scholar]
  • Orlova M.I., Anokhina L.E., Panov V.E., Nekrasov A.V. and Klimentenok S.N., 1999. Preliminary environmental state assessment for littoral zone in Resort District of St. Petersburg. Research Bulletin of the Baltic Floating University, 3, 37–42. [Google Scholar]
  • Paalme T., 2005. Nuisance brown macroalga Pilayella littoralis: primary production, decomposition and formation of drifting algal mats, Ph.D. thesis, Tallinn University, Tallinn, Estonia. [Google Scholar]
  • Paalme T., Kukk H., Kotta J. and Orav H., 2002. “In vitro” and “in situ” decomposition of nuisance macroalgal Cladophora glomerata and Pilayella littoralis. Hydrobiologia, 475/479, 469–476. [CrossRef] [Google Scholar]
  • Sakamoto M. and Okino T., 2000. Self-regulation of cyanobacterial blooms in a eutrophic lake. Verh. Int. Verein. Limnol., 27, 1243–1249. [Google Scholar]
  • Salovius S. and Bonsdorff E., 2004. Effects of depth, sediment and grazers on the degradation of drifting filamentous algae (Cladophora glomerata and Pilayella littoralis). J. Exp. Mar. Biol. Ecol., 298, 93–109. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton – Methodik. Mitt. Int. Ver. Limnol., 9, 1–38. [Google Scholar]
  • Vahteri P., Mäkinen A., Salovius S. and Vuorinen I., 2000. Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? Ambio., 29, 338–343. [Google Scholar]
  • Varis O., 1993. Cyanobacteria dynamics in a restored Finnish lake: a long term simulation study. Hydrobiologia, 268, 129–145. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.