Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 402, 2011
Eco-Hydro 2010
SER 2010
Article Number 05
Number of page(s) 17
Section Eco-Hydro 2010
Published online 28 July 2011
  • Acuña V. and Tockner K., 2010. The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Glob. Chang. Biol., 16, 2638–2650. [Google Scholar]
  • Alexander R.B., Smith R.A., Schwarz G.E., Boyer E.W., Nolan J.V. and Brakebill J.W., 2008. Differences in phosphorus and nitrogen delivery to the gulf of Mexico from the Mississippi river basin. Environ. Sci. Technol., 42, 822–830. [CrossRef] [PubMed] [Google Scholar]
  • Alexander R.B., Bohlke J.K., Boyer E.W., David M.B., Harvey J.W., Mulholland P.J., Seitzinger S.P., Tobias C.R., Tonitto C. and Wollheim W.M., 2009. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes. Biogeochemistry, 93, 91–116. [CrossRef] [Google Scholar]
  • Argerich A., Marti E., Sabater F., Ribot M., von Schiller D. and Riera J.L., 2008. Combined effects of leaf litter inputs and a flood on nutrient retention in a Mediterranean mountain stream during fall. Limnol. Oceanogr., 53, 631–641. [CrossRef] [Google Scholar]
  • Arnason B., Theodorsson P., Björnsson S. and Saemundsson K., 1969. Hengill, a high temperature thermal area in Iceland. Bull. Volcanol., 33, 245–259. [CrossRef] [Google Scholar]
  • Battin T.J., Kaplan L.A., Newbold J.D. and Hansen C.M.E., 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature, 426, 439–442. [CrossRef] [PubMed] [Google Scholar]
  • Battin T.J., Kaplan L.A., Findlay S., Hopkinson C.S., Marti E., Packman A.I., Newbold J.D. and Sabater F., 2008. Biophysical controls on organic carbon fluxes in fluvial networks. Nature Geosci., 1, 95–100. [CrossRef] [Google Scholar]
  • Battin T.J., Luyssaert S., Kaplan L.A., Aufdenkampe A.K., Richter A. and Tranvik L.J., 2009. The boundless carbon cycle. Nature Geosci., 2, 598–600. [CrossRef] [Google Scholar]
  • Baum D., Laughton R., Armstrong J.D. and Metcalfe N.B., 2005. The effect of temperature on growth and early maturation in a wild population of Atlantic salmon parr. J. Fish Biol., 67, 1370–1380. [CrossRef] [Google Scholar]
  • Bencala K.E. and Walters R.A., 1983. Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model. Wat. Resour. Res., 19, 718–724. [CrossRef] [Google Scholar]
  • Bernot M.J., Sobota D.J., Hall R.O., Mulholland P.J., Dodds W.K., Webster J.R., Tank J.L., Ashkenas L.R., Cooper L.W., Dahm C.N., Gregory S.V., Grimm N.B., Hamilton S.K., Johnson S.L., McDowell W.H., Meyer J.L., Peterson B., Poole G.C., Valett H.M., Arango C., Beaulieu J.J., Burgin A.J., Crenshaw C., Helton A.M., Johnson L., Merriam J., Niederlehner B.R., O'Brien J.M., Potter J.D., Sheibley R.W., Thomas S.M. and Wilson K., 2010. Inter-regional comparison of land-use effects on stream metabolism. Freshwat. Biol., 55, 1874–1890. [CrossRef] [Google Scholar]
  • Bottacin-Busolin A., Singer G., Zaramella M., Battin T.J. and Marion A., 2009. Effects of streambed morphology and biofilm growth on the transient storage of solutes. Environ. Sci. Technol., 43, 7337–7342. [CrossRef] [PubMed] [Google Scholar]
  • Bukaveckas P.A., 2007. Effects of channel restoration on water velocity, transient storage, and nutrient uptake in a channelized stream. Environ. Sci. Technol., 41, 1570–1576. [CrossRef] [PubMed] [Google Scholar]
  • Cardinale B.J., 2011. Biodiversity improves water quality through niche partitioning. Nature, 472, 86–89. [CrossRef] [PubMed] [Google Scholar]
  • Cardinale B.J., Palmer M.A., Swan C.M., Brooks S. and Poff N.L., 2002. The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem. Ecology, 83, 412–422. [CrossRef] [Google Scholar]
  • Constantz J., 1998. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Wat. Resour. Res., 34, 1609–1615. [CrossRef] [Google Scholar]
  • Constantz J. and Murphy F., 1991. The temperature dependence of ponded infiltration under isothermal conditions. J. Hydrol., 122, 119–128. [Google Scholar]
  • Cox T.J. and Runkel R.L., 2008. Eulerian-Lagrangian numerical scheme for simulating advection, dispersion, and transient storage in streams and a comparison of numerical methods. J. Environ. Eng., 134, 996–1005. [CrossRef] [Google Scholar]
  • Demars B.O.L., Manson J.R., Olafsson J.S., Gislason G.M., Gudmundsdottir R., Woodward G., Reiss J., Pichler D.E., Rasmussen J.J. and Friberg N., 2011. Temperature and the metabolic balance of streams. Freshw. Biol., 56, 1106–1121. [Google Scholar]
  • Ensign S.H. and Doyle M.W., 2005. In-channel transient storage and associated nutrient retention: Evidence from experimental manipulations. Limnol. Oceanogr., 50, 1740–1751. [CrossRef] [Google Scholar]
  • Fellows C.S., Valett H.M. and Dahm C.N., 2001. Whole-stream metabolism in two montane streams: contribution of the hyporheic zone. Limnol. Oceanogr., 46, 523–531. [CrossRef] [Google Scholar]
  • Friberg N., Dybkjaer J.B., Olafsson J.S., Gislason G.M., Larsen S.E. and Lauridsen T.L., 2009. Relationships between structure and function in streams contrasting in temperature. Freshw. Biol., 54, 2051–2068. [CrossRef] [Google Scholar]
  • Haggerty R., Marti E., Argerich A., von Schiller D. and Grimm N.B., 2009. Resazurin as a “smart” tracer for quantifying metabolically active transient storage in stream ecosystems. J. Geophys. Res.-Biogeosci., 114, G03014. [Google Scholar]
  • Hart D.R., Mulholland P.J., Marzolf E.R., DeAngelis D.L. and Hendricks S.P., 1999. Relationships between hydraulic parameters in a small stream under varying flow and seasonal conditions. Hydrol. Process., 13, 1497–1510. [CrossRef] [Google Scholar]
  • Hoffman J.D., 1992. Numerical Methods for Engineers and Scientists, McGraw-Hill. [Google Scholar]
  • Jones J.B. and Mulholland P.J. (eds.), 2000. Streams and Ground Waters, Academic Press, San Diego. [Google Scholar]
  • Lagarias J.C., Reeds J.A., Wright M.H. and Wright P.E., 1998. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim., 9, 112–147. [CrossRef] [Google Scholar]
  • Langford T.E.L., 1990. Ecological Effects of Thermal Discharges, Elsevier Applied Science, Barking. [Google Scholar]
  • Manson J.R. and Wallis S.G., 1995. An accurate numerical algorithm for advective transport. Commun. Numer. Methods. Eng., 11, 1039–1045. [CrossRef] [Google Scholar]
  • Manson J.R. and Wallis S.G., 2000. A conservative, semi-Lagrangian fate and transport model for fluvial systems: Part 1 – Theoretical development. Water Resour., 34, 3769–3777. [Google Scholar]
  • Manson J.R., Wallis S.G. and Hope D., 2001. Conservative semi-Lagrangian transport model for rivers with transient storage zones. Wat. Resour. Res., 37, 3321–3329. [CrossRef] [Google Scholar]
  • Manson J.R., Demars B.O.L., Wallis S.G. and Mytnik V., 2010. A combined computational and experimental approach to quantifying habitat complexity in Scottish upland streams. In: Proceedings of Hydropredict′ 2010, International Interdisciplinary Conference on Predictions for Hydrology, Ecology and Water Resource Management, Prague, Czech Republic, Paper No. 191, available at . [Google Scholar]
  • Manson J.R., Demars B.O.L. and Wallis S.G., 2011. Integrated experimental and computational hydraulic science in a unique natural laboratory. In: Rowinski P. (ed.), Experimental Methods in Hydraulic Research, Geoplanet: Earth and Planetary Sciences, Springer Book Series, 123–131. [Google Scholar]
  • Marti E., Fonolla P., von Schiller D., Sabater F., Argerich A., Ribot M. and Riera J.L., 2009. Variation in stream C, N and P uptake along an altitudinal gradient: a space-for-time analogue to assess potential impacts of climate change. Hydrol. Res., 40, 123–137. [CrossRef] [Google Scholar]
  • Marzolf E.R., Mulholland P.J. and Steinman A.D., 1994. Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can. J. Fish. Aquat. Sci., 51, 1591–1599. [CrossRef] [Google Scholar]
  • Moss B., 2010. Climate change, nutrient pollution and the bargain of Dr. Faustus. Freshw. Biol., 55, 175–187. [CrossRef] [Google Scholar]
  • Mulholland P.J., Steinman A.D., Marzolf E.R., Hart D.R. and Deangelis D.L., 1994. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams. Oecologia, 98, 40–47. [CrossRef] [PubMed] [Google Scholar]
  • Mulholland P.J., Marzolf E.R., Webster J.R., Hart D.R. and Hendricks S.P., 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnol. Oceanogr., 42, 443–451. [CrossRef] [Google Scholar]
  • Mulholland P.J., Fellows C.S., Tank J.L., Grimm N.B., Webster J.R., Hamilton S.K., Marti E., Ashkenas L., Bowden W.B., Dodds W.K., McDowell W.H., Paul M.J. and Peterson B.J., 2001. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol., 46, 1503–1517. [Google Scholar]
  • Odum H.T., 1956. Primary production in flowing waters. Limnol. Oceanogr., 1, 102–117. [CrossRef] [Google Scholar]
  • Power L.D. and Cardinale B.J., 2009. Species richness enhances both algal biomass and rates of oxygen production in aquatic microcosms. Oikos, 118, 1703–1711. [CrossRef] [Google Scholar]
  • Sand-Jensen K. and Mebus J.R., 1996. Fine-scale patterns of water velocity within macrophyte patches in streams. Oikos, 76, 169–180. [CrossRef] [Google Scholar]
  • Stutter M.I., Demars B.O.L. and Langan S.J., 2010. River phosphorus cycling: Separating biotic and abiotic uptake during short-term changes in sewage effluent loading. Water Resour., 44, 4425–4436. [Google Scholar]
  • Swanson T.E. and Cardenas M.B., 2010. Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnol. Oceanogr., 55, 1741–1754. [CrossRef] [Google Scholar]
  • Sweeney B.W., Bott T.L., Jackson J.K., Kaplan L.A., Newbold J.D., Standley L.J., Hession W.C. and Horwitz R.J., 2004. Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc. Nat. Acad. Sci. USA, 101, 14132–14137. [Google Scholar]
  • Vörösmarty C.J., McIntyre P.B., Gessner M.O., Dudgeon D., Prusevich A., Green P., Glidden S., Bunn S.E., Sullivan C.A., Liermann C.R. and Davies P.M., 2010. Global threats to human water security and river biodiversity. Nature, 467, 555–561. [CrossRef] [PubMed] [Google Scholar]
  • Woodward G., Dybkjaer J.B., Olafsson J.S., Gislason G.M., Hannesdottir E.R. and Friberg N., 2010. Sentinel systems on the razor’s edge: effects of warming on Arctic geothermal stream ecosystems. Glob. Chang. Biol., 16, 1979–1991. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.