Open Access
Knowl. Managt. Aquatic Ecosyst.
Number 398, 2010
Article Number 04
Number of page(s) 20
Published online 28 October 2010
  • Ahmadi-Nedushan B., St-Hilaire A., Ouarda T.B.M.J., Bilodeau L., Robichaud E., Thiemonge N. and Bobee B., 2007. Predicting river water temperatures using stochastic models: case study of the Moisie River (Quebec, Canada). Hydrol. Process., 21, 21–34. [CrossRef]
  • Akaike H., 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr., 19, 716–723. [NASA ADS] [CrossRef] [MathSciNet]
  • Alabaster J.S., 1967. The survival of salmon (Salmo salar L.) ans sea trout (S. trutta L.) in fresh and saline water at high temperatures. Water Res., 1, 717–730. [CrossRef]
  • Benyahya L., Caissie D., St-Hilaire A., Ouarda T.B.M.J. and Bobee B., 2007a. A review of statistical water temperature models. Can. Water Resources J., 32, 179–192. [CrossRef]
  • Benyahya L., St-Hilaire A., Ouarda T.B.M.J., Bobee B. and Ahmadi-Nedushan B., 2007b. Modeling of water temperatures based on stochastic approaches: case study of the Deschutes River. J. Environ. Eng. Sci., 6, 437–448. [CrossRef]
  • Benyahya L., Caissie D., El-Jabi N. and Satish M.G., 2010. Comparison of microclimate vs. remote meteorological data and results applied to a water temperature model (Miramichi River, Canada). J. Hydrol., 380, 247–259. [CrossRef]
  • Berger J.O., 1985. Certain Standard Loss Functions. In: Statistical decision theory and Bayesian Analysis, 2nd edn., Springer-Verlag, New York, 60–64.
  • Caissie D., 2006. The thermal regime of rivers: a review. Freshw. Biol., 51, 1389–1406. [CrossRef]
  • Caissie D., El-Jabi N. and St-Hilaire A., 1998. Stochastic modelling of water temperatures in a small stream using air to water relations. Can. J. Civ. Eng., 25, 250–260. [CrossRef]
  • Caissie D., Satish M.G. and El-Jabi N., 2005. Predicting river water temperatures using the equilibrium temperature concept with application on Miramichi River catchments (New Brunswick, Canada). Hydrol. Process., 19, 2137–2159. [CrossRef]
  • Caissie D., Satish M.G. and El-Jabi N., 2007. Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). J. Hydrol., 336, 303–315. [CrossRef]
  • Chanseau M., Croze O. and Larinier M., 1999. Impact des aménagements sur la migration anadrome du saumon atlantique (Salmo salar L.) sur le gave de Pau (France). Bull. Fr. Pêche Piscic., 353-354, 211–237.
  • Chenard J.F. and Caissie D., 2008. Stream temperature modelling using artificial neural networks: application on Catamaran Brook, New Brunswick, Canada. Hydrol. Process., 22, 3361–3372. [CrossRef]
  • Cluis D.A., 1972. Relationship between stream water temperature and ambient temperature – a simple autoregressive model for mean daily stream water temperature fluctuations. Nordic Hydrology, 3, 65–71.
  • Croze O., Blot E., Delmas F., Alesina R., Jourdan H., Bau F. and Breinig T., 2006. Suivi de la qualité de l’eau de la Garonne lors de la migration anadrome du saumon en amont de Golfech. RA06.04, GHAAPE, Toulouse.
  • Decola J.N., 1970. Water quality requirements for Atlantic salmon. CWT–10-16; PB–230733, Federal Water Quality Administration, Needham Heights, New England Basins Office.
  • Edinger J.E., Duttweiler D.W. and Geyer J.C., 1968. The response of water temperatures to meteorological conditions. Water Resour. Res., 4, 1137–1143. [CrossRef]
  • El-Jabi N., El-Kourdahi G. and Caissie D., 1995. Modélisation stochastique de la température de l’eau en rivière. Revue des Sciences de l’Eau, 8, 77–95.
  • Elliott J.M., 1991. Tolerance and resistance to thermal stress in juvenile Atlantic salmon, Salmo salar. Freshw. Biol., 25, 61–70. [CrossRef]
  • Erickson T.R. and Stefan H.G., 2000. Linear air/water temperature correlations for streams during open water periods. J. Hydrol. Eng., 5, 317–321. [CrossRef]
  • Fairchild W.L., Swansburg E.O., Arsenault J.T. and Brown S.B., 1999. Does an association between pesticide use and subsequent declines in catch of Atlantic salmon (Salmo salar) represent a case of endocrine disruption? Environ. Health Perspect., 107, 349–357. [CrossRef]
  • Kim K.S. and Chapra S.C., 1997. Temperature model for highly transient shallow streams. J. Hydraul. Eng., 123, 30–40. [CrossRef]
  • Kothandaraman V., 1971. Analysis of water temperature variations in large river. Journal of the Sanitary Engineering Division-ASCE, 97, 19–31.
  • Leopold L.B., Wolman M.G. and Miller J.P., 1964. Fluvial process in Geomorphology, W.H. Freeman and Co., San Francisco.
  • Marcé R. and Armengol J., 2008. Modelling river water temperature using deterministic, empirical, and hybrid formulations in a Mediterranean stream. Hydrol. Process., 22, 3418–3430. [CrossRef]
  • Marcotte N. and Duong V.-L., 1973. Le calcul de la température de l’eau des rivières. J. Hydrol., 18, 273–287. [CrossRef]
  • Moatar F. and Gailhard J., 2006. Water temperature behaviour in the River Loire since 1976 and 1881. C. R. Geosci., 338, 319–328. [CrossRef]
  • Mohseni O. and Stefan H.G., 1999. Stream temperature air temperature relationship: a physical interpretation. J. Hydrol., 218, 128–141. [CrossRef]
  • Mohseni O., Stefan H.G. and Erickson T.R., 1998. A nonlinear regression model for weekly stream temperatures. Water Resour. Res., 34, 2685–2692. [CrossRef]
  • Morin G. and Couillard D., 1990. Predicting river temperatures with a hydrological model. In: Encyclopedia of Fluid Mechanic, Surface and Groundwater Flow Phenomena, Golf Publishing Company, Houston, 171–209.
  • Pilgrim J.M., Fang X. and Stefan H.G., 1998. Stream temperature correlations with air temperatures in Minnesota: implications for climate warning. J. Am. Water Resour. Assoc., 34, 1109–1121. [CrossRef]
  • Poirel A., Lauters F. and Desaint B., 2008. 1977–2006 : Trente années de mesures des températures de l’eau dans le Bassin du Rhône. Hydroécol. Appl., 16, 191–213. [CrossRef] [EDP Sciences]
  • Raphael J.M., 1962. Prediction of temperature in rivers and reservoirs. Journal of the Power Division, 88, 157–181.
  • Sinokrot B.A. and Stefan H.G., 1984. Stream water-temperature sensitivity to weather and bed parameters. J. Hydraul. Eng., 120, 722–736. [CrossRef]
  • Sinokrot B.A. and Stefan H.G., 1993. Stream Temperature Dynamics – Measurements and Modeling. Water Resour. Res., 29, 2299–2312. [CrossRef]
  • Sinokrot B.A. and Stefan H.G., 1994. Stream water-temperature sensitivity to weather and bed parameters. J. Hydraul. Eng., 120, 722–736. [CrossRef]
  • Stefan H.G. and Preud’homme E.B., 1993. Stream temperature estimation from air temperature. J. Am. Water Resour. Assoc., 29, 27–45. [CrossRef]
  • Swansburg E., Chaput G., Moore D., Caissie D. and El-Jabi N., 2002. Size variability of juvenile Atlantic salmon: links to environmental conditions. J. Fish Biol., 61, 661–683. [CrossRef]
  • Torgersen C.E., Faux R.N., McIntosh B.A., Poage N.J. and Norton D.J., 2001. Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sens. Environ., 76, 386–398. [CrossRef]
  • Webb B.W. and Zhang Y., 1999. Water temperatures and heat budgets in Dorset chalk water courses. Hydrol. Process., 13, 309–321. [CrossRef]
  • Webb B.W., Hannah D.M., Moore R.D., Brown L.E. and Nobilis F., 2008. Recent advances in stream and river temperature research. Hydrol. Process., 22, 902–918. [CrossRef]
  • Wilkie M.P., Brobel M.A., Davidson K., Forsyth L. and Tufts B.L., 1997. Influences of temperature upon the postexercise physiology of Atlantic salmon (Salmo salar). Can. J. Fish. Aquatic Sci., 54, 503–511. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.