Open Access
Issue |
Knowl. Managt. Aquatic Ecosyst.
Number 398, 2010
|
|
---|---|---|
Article Number | 03 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/kmae/2010024 | |
Published online | 27 September 2010 |
- Ahlgren G., Lundstedt L., Brett M.T. and Forsberg C., 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res., 12, 809–818. [Google Scholar]
- Atkinson A., 1994. Diets and feeding selectivity among the epipelagic copepod community near South Georgia in summer. Polar. Biol., 14, 551–560. [CrossRef] [Google Scholar]
- Augustin C.B. and Boersma M., 2006. Effects on nitrogen stressed algae on different Acartia species. J. Plankton Res., 28, 429–436. [CrossRef] [Google Scholar]
- Azam F., Fenchel T., Field J.G., Meyer-Reil L.A. and Thingstad F., 1983. The ecological role of water column microbes in the sea . Mar. Ecol. Prog. Ser., 10, 257–263. [CrossRef] [Google Scholar]
- Bennett E.M., Carpenter S.R. and Caraco N.F., 2001. Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience, 51, 227–234. [CrossRef] [Google Scholar]
- Boersma M., 2000. The nutritional quality of p-limited algae for Daphnia. Limnol. Oceanogr., 45, 1157–1161. [CrossRef] [Google Scholar]
- Boersma M. and Kreutzer C., 2002. Life at the edge: is food quality really of minor importance at low quantities? Ecology, 83, 2552–2561. [CrossRef] [Google Scholar]
- Boersma M., Aberle N., Hantzsche F.M., Schoo K.L., Wiltshire K.H. and Malazahn A.M., 2008. Nutritional limitation travels up food chain. Internat. Rev. Hydrobiol., 93, 479–488. [CrossRef] [Google Scholar]
- Brett M.T., 1993. Comment ‘Possibility of N or P limitation for planktonic cladocerans – an experimental test (Urabe and Watanabe) and nutrient element limitation of zooplankton production (Hessen)’. Limnol. Oceanogr., 38, 1333–1337. [CrossRef] [Google Scholar]
- Brett M.T. and Müller-Navarra D.C., 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biol., 38, 483–499. [CrossRef] [Google Scholar]
- Brett M.T., Müller-Navarra D.C. and Park S., 2000. Empirical analysis of mineral P limitation’s impact on algal food quality for freshwater zooplankton. Limnol. Oceanogr., 45, 1564–1575. [CrossRef] [Google Scholar]
- Brett M.T., Muller-Navarra D.C., Ballantyne A.P., Ravet J.L. and Goldman C.R., 2006. Daphnia fatty acid composition reflects that of their diet. Limnol. Oceanogr., 51, 2428–2437. [CrossRef] [Google Scholar]
- Brett M.T., Kainz M.J., Taipale S.J. and Seshan H., 2009. Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proc. Natl. Acad. Sci. USA, 106, 21197–21201. [Google Scholar]
- Brett M.T., Müller-Navarra D.C. and Persson J., 2009b. Crustacean zooplankton fatty acid composition. In: Arts M.T., Brett M.T. and Kainz M.J. (eds.), Lipids in aquatic ecosystems, Springer, New York, 115–146. [Google Scholar]
- Broglio E., Jónasdóttir S.H., Calbet A., Jakobsen H.H. and Saiz E., 2003. Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa: relationship with prey fatty acid composition. Aquat. Microb. Ecol., 31, 267–278. [CrossRef] [Google Scholar]
- Brown M.R., Jeffrey S.W., Volkman J.K. and Dunstan G.A., 1997. Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331. [CrossRef] [Google Scholar]
- Capriulo G.M., 1990. Ecology of marine protozoa, 1st edn., New York: Oxford University Press. [Google Scholar]
- Capriulo G.M., Sherr E.B. and Sherr B.F., 1991. Trophic behavior and related community feeding activities of heterotrophic marine protists. In: Reid P.C., Turley C.M. and Burkill P.H. (eds.), Protozoa and their role in marine processes, Springer, Berlin, 219–265. [Google Scholar]
- Cobalas M.A. and Lechado J.Z., 1989. Lipids in microalgae. A review I. Biochemistry. Grasas y aceites (Esp.), 40, 118–145. [Google Scholar]
- Cole J.J., Likens G.E. and Strayer D.L., 1982. Photosynthetically produced dissolved organic carbon: an important carbon source for planktonic bacteria. Limnol. Oceanogr., 27, 1080–1090. [CrossRef] [Google Scholar]
- Cole J.J., Findlay S. and Pace M.L., 1988. Bacterial production in fresh and saltwater: a cross system over view. Mar. Ecol. Prog Ser., 43, 1–10. [CrossRef] [Google Scholar]
- De Mott W.R., 1988. Discrimination between algae and detritus by freshwater and marine zooplankton. Bulletin of Marine Science, 43, 486–499. [Google Scholar]
- De Mott W.R. and Müller-Navarra D.C., 1997. The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshwater Biol., 38, 649–664. [CrossRef] [Google Scholar]
- Desvillettes C., Bourdier G. and Breton J.C., 1997. On the occurrence of a possible bioconversion of linolenic acid into docosahexanoic acid by copepod Eucyclops serrulatus fed on microalgae. J. Plankton Res. 19, 273–278. [CrossRef] [Google Scholar]
- Dickman E.M., Vanni M.J. and Horgan M.J., 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia, 149, 676–689. [CrossRef] [PubMed] [Google Scholar]
- Dickman E.M., Newell J.M., Gonzalez M.J. and Vanni M.J., 2008. Light, nuttients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. PNAS, 105, 18408–18412. [CrossRef] [Google Scholar]
- Doi H., Chang K.-H., Ando T., Ninomiya I., Imai H. and Nakano S., 2009. Resource availability and ecosystem size predict food-chain length in pond ecosystems. Oikos, 118, 138–144. [CrossRef] [Google Scholar]
- Ederington M.C., Mcmanus G.B. and Harvey H.R., 1995. Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnol. Oceanogr., 40, 860–867. [CrossRef] [Google Scholar]
- Elser J.J., Dohherfuhl D., Mackay N.A. and Schampel J.H., 1996. Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioScience, 46, 674–684. [Google Scholar]
- Elser J.J., Fagan W.F., Denno R.F., Dobberfuhl D.R., Folarin A., Huberty A., Interlandi S., Kilham S.S., Mccauley E., Schulz K.L., Siemann E.H. and Sterner R.W., 2000. Nutritional constrains in terrestrial and fresh water food webs. Nature, 408, 578–580. [CrossRef] [PubMed] [Google Scholar]
- Elser J.J., Hayakawa K. and Urabe J., 2001. Nutrient limitation reduces food quality for zooplankton: daphnia response to seston phosphorus enrichment. Ecology, 82, 898–903. [Google Scholar]
- Ferrao-Filho A.S., Fileto C., Lopes N.P. and Arcifa M.S., 2003. Effects of essential fatty acids and N and P-limited algae on the growth rate of tropical cladocerans. Freshwater Biol., 48, 759–767. [CrossRef] [Google Scholar]
- Forsberg B.R.F., 1985. The fate of planktonic primary production. Limnol. Oceanogr., 30, 807–819. [CrossRef] [Google Scholar]
- Galloway J.N. and Cowling E.B., 2002. Nitrogen and the world. Ambio., 31, 64–71. [PubMed] [Google Scholar]
- Gifford D.J. and Dagg M.J., 1991. The microzooplankton-mesozooplankton link: consumption of planktonic protozoa by the calanoid copepods Acartia tonsa Dana and Neocalanus plumchrus Murkukawa. Mar. Microb. Food Webs, 5, 161–177. [Google Scholar]
- Goedkoop W., Demandt M. and Ahlgren G., 2007. Interactions between food quantity and quality (long-chain polyunsaturated fatty acid concentrations) effects on growth and development of Chironomous riparius. Can. J. Fish. Aquat. Sci., 64, 425–436. [CrossRef] [Google Scholar]
- Goulden C.E. and Place A.R., 1990. Fatty acid synthesis and accumulation rates in daphnids. J. Exp. Zool., 256, 168–178. [CrossRef] [Google Scholar]
- Gugger M., Lyra C., Suominen I., Tsitko I., Humbert J.-F., Salkinoja-Salonen M.S. and Sivonen K., 2002. Cellular fatty acids as chemotaxonomic markers of the genera Anabaena, Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). Int. J. Syst. Evol. Microbiol., 52, 1007–1015. [CrossRef] [PubMed] [Google Scholar]
- Hall S.R., Leibold M.A., Lytle D.A. and Smith V.H., 2004. Stoichiometry and planktonic grazer composition over gradients of light, nutrients, and predation risk. Ecology, 85, 2291–2301. [CrossRef] [Google Scholar]
- Hansson L.A., Annadotter H., Bergman E., Hamrin S.F., Jeppesen E., Kairesalo T., Luokkanen E., Nilsson P.A., Sondergaard M. and Strand J., 1998. Biomanipulation as an application of food chain theory: constrains, synthesis and recommendations for temperate lakes. Ecosystems, 1, 558–574. [CrossRef] [Google Scholar]
- Harrison P.J., Thompson P.A. and Calderwood G.S., 1990. Effects of nutrient and light limitation on the biochemical composition of phytoplankton. J. Appl. Phycol., 2, 45–56. [CrossRef] [Google Scholar]
- Havens K.E. and East T.L., 1997. Carbon dynamics in the grazing food chain of a subtropical lake. J. Plankton Res., 19, 1687–1711. [CrossRef] [Google Scholar]
- Hecky R.E. and Kilham P., 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr., 33, 796–822. [CrossRef] [Google Scholar]
- Hessen D.O., 1990. Carbon, nitrogen and phosphorus status in Daphnia at varying conditions. J. Plankton Res., 12, 1239–1249. [CrossRef] [Google Scholar]
- Hessen D.O., 1992. Nutrient element of zooplankton production. Am. Nat., 140, 799–814. [CrossRef] [Google Scholar]
- Howarth R.W., 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. System., 19, 898–910. [Google Scholar]
- Hutchinson G.E., 1959. Homage to Santa rosalia, or why are there so many kinds of animals? Am. Nat., 93, 145–159. [CrossRef] [Google Scholar]
- Jansson M., Bergstrom A.K., Blomqvist P., Isaksson A. and Jonsson A., 1999. Impact of allochthonus organic carbon on microbial food web carbon dynamics and structure in Lake Ortrasket. Arch. Hydrobiol., 144, 409–428. [Google Scholar]
- Jónasdóttir S.H., Fields D. and Pantoja S., 1995. Copepod egg production in long island sound USA, as a function of the chemical composition of seston. Mar. Ecol. Prog. Ser., 119, 87–98. [CrossRef] [Google Scholar]
- Kainz M., Arts M.T. and Mazumder A., 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnol. Oceanogr., 49, 1784–1793. [CrossRef] [Google Scholar]
- Kainz M.J., Perga M.-E., Arts M.T. and Mazumder A., 2009. Essential fatty acids concentrations of different seston sizes and zooplankton: a field study of monomictic coastal lakes. J. Plankton Res., 31, 635–645. [CrossRef] [Google Scholar]
- Kankaala P., Taipale S., Li L. and Jones R.I., 2010. Diets of crustacean zooplankton, inferred from stable carbon and nitrogen isotope analyses, in lakes with varying allochthonous dissolved organic carbon content. Aquatic Ecol., DOI: 10.1007/s10452-010-9316-x. [Google Scholar]
- Kilham S.S., Kreeger D.A., Goulden C.E. and Lynn S.G., 1997. Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwater Biol., 38, 639–647. [CrossRef] [Google Scholar]
- Klein Breteler W.C.M., Schogt N., Baas M., Schouten S. and Kraay G.W., 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol., 135, 191–198. [CrossRef] [Google Scholar]
- Klein Breteler W.C.M., Koski M. and Rampen S., 2004. Role of essential lipids in copepod nutrition: no evidence of trophic upgrading of food quality by a marine ciliate. Mar. Ecol. Prog. Ser., 274, 199–208. [CrossRef] [Google Scholar]
- Kleppel G.S., Burkart C.A. and Houchin L., 1998. Nutrition and the regulation of egg production in the calanoid copepod Acartia tonsa. Limnol. Oceanogr., 43, 1000–1007. [CrossRef] [Google Scholar]
- Levinson H., Turner J.T., Nielsen T.G. and Hansen B.W., 2000. On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar. Ecol. Prog. Ser., 204, 65–77. [CrossRef] [Google Scholar]
- Lundstedt L. and Brett M.T., 1991. Differential growth rates of 3 cladoceran species in response to mono-algal and mixed-algal cultures. Limnol. Oceanogr., 36, 159–165. [CrossRef] [Google Scholar]
- Lürling M. and Van Donk E., 1997. Life history consequences for Daphnia pulex feeding on nutrient-limited phytoplankton. Freshwater Biol., 38, 693–709. [CrossRef] [Google Scholar]
- Main T., Dobberfuhl D.R. and Elser J.J., 1997. N:P stoichiometry and ontogeny in crustacean zooplankton: a test of the growth rate hypothesis. Limnol. Oceanogr., 42, 1474–1478. [CrossRef] [Google Scholar]
- Malzahn A.M., Aberle N., Clemmesen C. and Boersma M., 2007. Nutrient limitation of primary producers affects planktivorous fish condition. Limnol. Oceanogr., 52, 2062–2071. [CrossRef] [Google Scholar]
- Martin-Creuzburg D., Von Elert E. and Hoffman K.H., 2008. Nutritional constrains at the cyanobacteria- Daphnia magna interface: the role of stories. Limnol. Oceanogr., 53, 456–468. [CrossRef] [Google Scholar]
- Mayer J., Dokulil M.T., Salbrechter M., Berger M., Posch T., Fister G.P., Kirschner A.K.T., Velimirov B., Steitz A. and Ulbricht T., 1997. Seasonal successions and trophic relations between phytoplankton, zooplankton, ciliate and bacteria in a hypertrophic shallow lake in Vienna, Austria. Hydrobiologia, 342/343, 165–174. [CrossRef] [Google Scholar]
- Moss B., Stanfield J. and Irvine K., 1991. Development of daphnid communities in diatom-dominated and cyanophyte-dominated lakes and their relevance to lake restoration by biomanipulation. J. Appl. Ecol., 28, 568–602. [Google Scholar]
- Müller-Navarra D.C., 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol., 132, 297–307. [Google Scholar]
- Müller-Navarra D.C., Brett M.T., Liston A.M. and Goldman C.R., 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature, 403, 74–77. [CrossRef] [PubMed] [Google Scholar]
- Müller-Navarra D.C., Brett M.T., Park S., Chandra S., Ballantyne A.P., Zorita E. and Goldman C.R., 2004. Unsaturated fatty acid content in seston and trophodynamic coupling in lakes. Nature, 427, 69–72. [CrossRef] [PubMed] [Google Scholar]
- Nanton D.A. and Castell J.D., 1998. The effects of dietary fatty acids on the fatty acid composition of the harpacticoid copepod, Tishe sp. for use as a live food for marine fish larvae. Aquaculture, 163, 251–261. [CrossRef] [Google Scholar]
- Norsker N.H. and Støttrup J.G., 1994. The importance of dietary HUFAs for fecundity and HUFA content in the harpacticoid Thisbe holothuriae. Aquaculture, 125, 155–166. [CrossRef] [Google Scholar]
- Pace M.L., Mcmanus G.B. and Findlay S.E.G., 1990. Planktonic community structure determines the fate of bacterial production in a temperature lake. Limnol. Oceanogr., 35, 795–808. [CrossRef] [Google Scholar]
- Perkins M.C., Woods H.A., Harrison J.F. and Elser J.J., 2004. Dietary phosphorus affects the growth of larval Manduca sexta. Arch. Insect. Biochem. Physiol., 55, 153–168. [CrossRef] [PubMed] [Google Scholar]
- Persson J. and Verde T., 2006. Polyunsaturated fatty acids in zooplankton: variation due to taxonomy and trophic position. Freshwater Biol., 51, 887–900. [CrossRef] [Google Scholar]
- Pinkart H.C., Ringelberg D.B., Piceno Y.M., Mac Naughton S.J. and White S.J., 2002. Biochemical approaches to biomass measurements and community structure analysis. In: Hurst C.J. and Hendon V.A. (eds.), Manual of environmental microbiology, Asm press, Washington, 101–113. [Google Scholar]
- Piorreck M. and Pohl P., 1984. Formation of biomass, total proteins, cholorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry, 23, 217–223. [CrossRef] [Google Scholar]
- Pohl P. and Zurheide F., 1982. Fat production in freshwater and marine algae. In: Hoppe H.A., Levring T. and Tanaka Y. (eds.), Marine Algae in Pharmaceutical Science, Vol. 2, Walter De Gruyter & Co., Berlin-New York, 65–80. [Google Scholar]
- Post D.M., Pace M.L. and Hairston N.G., 2000. Ecosystem size determines food-chain length in lakes. Nature, 405, 1047–1049. [CrossRef] [PubMed] [Google Scholar]
- Ravet J.L. and Brett M.T., 2006. Phytoplankton essential fatty acid and phosphorus content constraints on Daphnia somatic growth and reproduction. Limnol. Oceanogr., 51, 2438–2452. [CrossRef] [Google Scholar]
- Riemann B. and Søndergaard M., 1986. Bacteria. In: Riemann B. and Søndergaard M. (eds.), Carbon dynamics in eutrophic, temperate lakes, Elsevier, Amsterdam, 127–197. [Google Scholar]
- Roessler P.G., 1990. Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol., 26, 393–399. [CrossRef] [Google Scholar]
- Ryther J.H. and Dunstan W.M., 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science, 171, 1008–1013. [CrossRef] [PubMed] [Google Scholar]
- Sargent J.R. and Whittle K.J., 1981. Lipids and hydrocarbons in the marine food web. In: Longhurst A.R. (ed.), Analysis of marine ecosystems, Academic press, London, 491–533. [Google Scholar]
- Schoener T.W., 1989. Food webs from the small to the large. Ecology, 70, 1559–1589. [CrossRef] [Google Scholar]
- Schulz K.L. and Sterner R.W., 1999. Phytoplankton phosphorus limitation and food quality for Bosmina. Limnol. Oceanogr., 44, 1549–1556. [CrossRef] [Google Scholar]
- Slobodkin L.B., 1960. Ecological energy relationships at the population level. Am. Nat., 94, 213–236. [CrossRef] [Google Scholar]
- Stanley-Samuelson D.W., 1994. Prostaglandins and related eicosanoids in insects. Adv. Insect Physiol., 24, 115–212. [CrossRef] [Google Scholar]
- Stelzer R.S. and Lamberti G.A., 2002. Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology, 83, 1039–1051. [CrossRef] [Google Scholar]
- Sterner R.W., 1997. Modeling interactions of food quality and quantity in homeostatic consumers. Freshwater Biol., 38, 473–481. [CrossRef] [Google Scholar]
- Sterner R.W., 1998. Demography of a natural population of Daphnia retrocurva in a lake with low food quality. J. Plankton Res., 20, 471–489. [CrossRef] [Google Scholar]
- Sterner R.W. and Hessen D.O., 1994. Algal nutrient limitation and the nutrition of aquatic herbivores. Ann. Rev. Ecol. System., 25, 1–29. [Google Scholar]
- Sterner R.W. and Schulz K.L., 1998. Zooplankton nutrition: recent progress and reality check. Aquat. Ecol., 32, 261–279. [Google Scholar]
- Sterner R.W., Elser J.J., Fee E.J., Guildford S.J. and Chrzanowski T.H., 1997. The light/nutrient ratio in lakes: the balance of energy and materials affect ecosystem structure and process. Am. Nat., 150, 663–684. [CrossRef] [PubMed] [Google Scholar]
- Sterner R.W., Clasen J., Lampert W. and Weisse T., 1998. Carbon: phosphorus stoichiometry and food chain production. Ecol. Lett., 1, 146–150. [CrossRef] [Google Scholar]
- Stoecker D.K. and Capuzzo J.M., 1990. Predation on protozoa: its importance to zooplankton. J. Plankton Res., 12, 891–908. [CrossRef] [Google Scholar]
- Stoecker D.K. and Egloff D.A., 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. J. Exp. Mar. Biol. Ecol., 110, 53–68. [CrossRef] [Google Scholar]
- Tanaka T., Rassoulzadegan F. and Thingstad T.F., 2005. Analyzing the trophic link between the mesopelagic microbial loop and zooplankton from observed depth profiles of bacteria and protozoa. Biogeosciences, 2, 9–13. [CrossRef] [Google Scholar]
- Tang K.W. and Taal M., 2005. Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J. Exp. Mar. Biol. Ecol., 318, 85–98. [CrossRef] [Google Scholar]
- Tang K.W., Jakobsen H.H. and Visser A.W., 2001. Phaeocystis globosa (prymnesiophyceae) and the planktonic food web: feeding, growth and trophic interactions among grazers. Limnol. Oceanogr., 46, 1860–1870. [CrossRef] [Google Scholar]
- Thingstad T.F. and Pengerud B., 1985. Fate and effect of allochthonous organic material in aquatic microbial ecosystems: An analysis based on chemostat theory. Mar. Ecol. Prog. Ser., 21, 47–62. [CrossRef] [Google Scholar]
- Urabe J. and Sterner R.W., 1996. Regulation of herbivore growth by the balance of light and nutrients. Proc. Natl. Acad. Sci. USA, 93, 8465–8469. [CrossRef] [Google Scholar]
- Urabe J. and Watanabe Y., 1992. Possibility of N-limitation or P-limitation for planktonic cladocerans: an experimental test. Limnol. Oceanogr., 37, 244–251. [CrossRef] [Google Scholar]
- Urabe J., Clasen J. and Sterner R.W., 1997. Phosphorus limitation of Daphnia growth: is it real? Limnol. Oceanogr., 42, 1436–1443. [CrossRef] [Google Scholar]
- Urabe J., Kyle M., Makino W., Yoshida T., Andersen T. and Elser J.J., 2002. Reduced light increases herbivore production due to stoichiometric effects of light/nutrient balance. Ecology, 83, 619–627. [CrossRef] [Google Scholar]
- Van Donk E., Lürling M., Hessen D.O. and Lokhorst G.M., 1997. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol. Oceanogr., 42, 357–364. [Google Scholar]
- Veloza A.J., Chu F.-L.E., and Tang K.W., 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol., 148, 779–788. [CrossRef] [Google Scholar]
- Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H. and Tilman D.G., 1997. Human alterations of the global cycle: sources and consequences. Ecol. Appl., 7, 737–750. [Google Scholar]
- Von Elert E., 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr., 47, 1764–1773. [CrossRef] [Google Scholar]
- Von Elert E., Martin-Creuzburg D. and Le Coz J.R., 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond., 270, 1209–1214. [Google Scholar]
- Weers P.M.M. and Gulati R.D., 1997. Effect of the addition of polyunsaturated fatty acids to the diet on the growth and fecundity of Daphnia galeata. Freshwater Biol., 38, 721–729. [CrossRef] [Google Scholar]
- Weisse T. and Müller H., 1990. Significance of heterotrophic nanoflagellates and ciliates in large lakes: evidence from Lake Constance. In: Tilzer M.M. and Serruya C. (eds.), Large Lakes, Springer Verlag, Berlin, 540–553. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.