Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 398, 2010
Article Number 02
Number of page(s) 19
DOI https://doi.org/10.1051/kmae/2010023
Published online 27 September 2010
  • AFNOR, 1999. Water Quality – Determination of Chlorophyll a and of a phaeopigments index – Molecular Absorption Spectrometric Method, NF T90-117. [Google Scholar]
  • AFNOR, 2006. Water Quality – Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique), NF EN 15204. [Google Scholar]
  • Allee R.J. and Johnson J.E., 1999. Use of satellite imagery to estimate surface chlorophyll a and Secchi disc depth of Full Shoals Reservoir, Arkansas, USA. Int. J. Remote Sens., 20, 1057–1072. [CrossRef] [Google Scholar]
  • Anneville O., Ginot V., Druart J.-C., and Angeli N., 2002. Long term study (1974–1998) of seasonal changes in the phytoplankton in Lake Geneva: a multiple table approach. J. Plankton Res., 24, 993–1007. [Google Scholar]
  • Beutler M., Wilshire K.H., Meyer B., Moldaenke C., Lüring C., Meyerhöfer M., Hansen H.P. and Dau H., 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res., 72, 39–53. [Google Scholar]
  • Brettum P., 1989. Algen als Indikatoren für die Gewässerqualität in norwegischen Binnenseen. Norsk Institutt for Vannforskning, NIVA, 2344, 1–111. [Google Scholar]
  • CIPEL, 1984. Le Léman : Synthèse des travaux de la Commission internationale pour la protection des eaux du Léman contre la pollution 1957–1982, Presses de l’imprimerie de l’ère nouvelle, Lausanne. [Google Scholar]
  • De Bortoli J. and Argillier C., 2008. Définition des conditions de référence et des limites des classes d’état sur la base d’une approche pressions/impacts – Plans d’eau – Paramètre Chlorophylle a. Rapport CEMAGREF. [Google Scholar]
  • Desiderio R.A., Moore C., Lantz C. and Cowles T.J., 1997. Multiple excitation fluorometer for in situ oceanographic applications. Applied Optics, 36, 1289–1296. [CrossRef] [PubMed] [Google Scholar]
  • Desortová B., 1981. Relationship between chlorophyll a concentration and phytoplankton biomass in several reservoirs in Czechloslovakia. Int. Rev. gesamten Hydrobiol., 66, 153–169. [CrossRef] [Google Scholar]
  • Dokulil M.T., Teubner K. and Greisberger S., 2005. Typenspezifische Referenzbedingungen für die integrierende Bewertung des ökologischen Zustandes stehender Gewässer Österreichs gemä der EU-Wasserrahmenrichtlinie. Modul 1: Die Bewertung der Phytoplankton struktur nach dem Brettum-Index. Projekstudie Phase 3, Abschlussbericht. Im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien. [Google Scholar]
  • European Commission , 2008. Commission Decision of 30 October 2008 establishing, pursuant to Directive 2000/60/EC of the European Parliament and of the Council, the values of the Member State monitoring system classifications as a result of the intercalibration exercise. Official Journal of the European Communities, 332, 20–44. [Google Scholar]
  • European Parliament , 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a Framework for Community action in the field of water policy. Official Journal of the European Communities, 327, 1–72. [Google Scholar]
  • Falkowski P.G. and Raven J.A., 1997. Aquatic Photosynthesis, Blackwell Sciences, Oxford. [Google Scholar]
  • Felip M. and Catalan J., 2000. The relationship between phytoplankton biovolume and chlorophyll in a deep oligotrophic lake: decoupling in their spatial and temporal maxima. J. Plankton Res., 22, 91–105. [CrossRef] [Google Scholar]
  • Foy R.H., 1993. The phycocyanin to chlorophyll a ratio and other cell components as indicators of nutrient limitation in 2 planktonic cyanobacteria subjected to low-light exposures. J. Plankton Res., 15, 1263–1276. [CrossRef] [Google Scholar]
  • Gregor J. and Maršálek B., 2004. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res., 38, 517–522. [CrossRef] [PubMed] [Google Scholar]
  • Gregor J., Geriš R., Maršálek B., Hetesá J. and Marvan P., 2005. In situ quantification of phytoplankton in reservoirs using a submersible spectrofluorometer. Hydrobiologia, 548, 141–151. [CrossRef] [Google Scholar]
  • Harris G.P., 1986. Phytoplankton Ecology: Structure, Function and Fluctuation, 1st edition, Chapman & Hall, London. [Google Scholar]
  • Higgs E.S., 1997. What is Good Ecological Restoration? Conserv. Biol., 11, 338–348. [CrossRef] [Google Scholar]
  • Hillebrand H., Dürselen C.D., Kieschtel D., Zohary T. and Pollingher U., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol., 35, 403–424. [Google Scholar]
  • Jacquet S., Briand J.F., Leboulanger C., Avois-Jacquet C., Paolini G., Oberhaus L., Tassin B., Vinçon-Leite B., Druart J.C., Anneville O. and Humbert J.F., 2005. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae, 4, 651–672. [CrossRef] [Google Scholar]
  • Jacquet S., Paolini G., Lazzarotto J., Girel C., Druart J.C., Perga M., Berdjeb L., Kerrien S., Humbert J.F., Domaizon I., Perney P. and Laine L., 2008. Suivi de la qualité des eaux du lac du Bourget pour l’année 2007, Rapport CISALB. [Google Scholar]
  • Labaugh J.W., 1995. Relation of algal biovolume to chlorophyll-a in selected lakes and wetlands in the North Central United States. Can. J. Fish. Aquat. Sci., 52, 416–424. [CrossRef] [Google Scholar]
  • Leboulanger C., Dorigo U., Jacquet S., Le Berre B., Paolini G. and Humbert J.F., 2002. Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study. Aquat. Microb. Ecol., 30, 83–89. [Google Scholar]
  • Long S.P., Humphries S. and Falkowski P.G., 1994. Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol., 45, 633–662. [CrossRef] [Google Scholar]
  • Lorenzen C.J., 1967. Determination of chlorophyll and pheopigments by spectrophotometric equations. Limnol. Oceanog., 12, 343–346. [Google Scholar]
  • McCune B. and Mefford J., 2006. PC-ORD – Multivariate Analysis of Ecological Data, Version 5.18, MjM Software, Gleneden Beach, Oregon. [Google Scholar]
  • Meeks J.C., 1974. Chlorophylls. In: Stewart W.D.P. (ed.), Algal Physiology and Biochemistry, Blackwell Scientific Publications, Oxford, 161–175. [Google Scholar]
  • Meyns S., Illi R. and Ribi B., 1994. Comparison of chlorophyll-a analysis by HPLC and spectrophotometry: Where do the differences come from? Arch. Hydrobiol., 132, 129–139. [Google Scholar]
  • Millie D.F., Fahnenstiel G.L., Carrick H.J., Lohrenz S.E. and Schofield O.M.E., 2002. Phytoplankton pigments in coastal Lake Michigan: distributions during the spring isothermal period and relation with episodic sediment resuspension. J. Phycol., 38, 639–648. [CrossRef] [Google Scholar]
  • Moline M.A. and Prezelin B.B., 1997. High-resolution time-series data for in situ carbon fixation at a Palmer LTER site and its implications for modeling primary production in the Southern Ocean. Polar Biol., 17, 39–53. [CrossRef] [Google Scholar]
  • Moline M.A., Prezelin B.B. and Schofield O., 1997. Palmer LTER: Stable interannual successional patterns of phytoplankton communities in the coastal waters off Palmer Station. Antarctic Journal of the United States, 32, 151–153. [Google Scholar]
  • Moline M.A., Prezelin B.B., Schofield O. and Smith R.C., 1997b. Temporal dynamics of coastal Antarctic phytoplankton: Environmental driving forces and impact of a 1991–1992 summer diatom bloom on the nutrient regimes. In: Battaglia B., Valencia J. and Walton D.W.H. (eds.), Antarctic communities, Cambridge University Press, Cambridge, 67–72. [Google Scholar]
  • Pannard A., Bormans M., Lefebvre S., Claquin P. and Lagadeuc Y., 2007. Phytoplankton size distribution and community structure: influence of nutrient input and sedimentary loss. J. Plankton Res., 29, 583–598. [CrossRef] [Google Scholar]
  • Pinckney J., Papa R. and Zingmark R., 1994. Comparison of high-performance liquid-chromatographic, spectrophotometric and fluorometric methods for determining chlorophyll a concentrations in estuarine sediments. J. Microbiol. Methods, 19, 59–66. [CrossRef] [Google Scholar]
  • Pinto A.M.F., Von Sperling E. and Moreira R.M., 2001. Chlorophyll-a determination via continuous measurement of plankton fluorescence: Methodology development. Water Res., 35, 3977–3981. [CrossRef] [PubMed] [Google Scholar]
  • Reynolds C.S., 1984. The ecology of freshwater phytoplankton, Cambridge University Press, Cambridge. [Google Scholar]
  • Reynolds C.S., Huszar V., Kruk C., Naselli-Flores L. and Melo S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24, 417–428. [Google Scholar]
  • Rodriguez H., Rivas J., Guerrero M.G. and Losada M., 1991. Enhancement of phycobiliprotein production in nitrogen-fixing cyanoabcteria. J. Biotechnol., 20, 263–270. [CrossRef] [Google Scholar]
  • Rolland A. and Jacquet S., 2010. Classification de l’état écologique du réservoir Marne via l’utilisation de 3 métriques : chlorophylle a, indice planctonique lacustre et phosphore total. Hydroécol. Appl., 17, DOI: 10.1051/hydroecol/2010003. [Google Scholar]
  • Smayda T.J., 1978. From phytoplankters to biomass. In: Sournia A. (ed.), Phytoplankton Manual, Unesco Paris, 273–279. [Google Scholar]
  • Sommer U., 1983. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hybrobiol., 96, 399–416. [Google Scholar]
  • Soohoo J.B., Kiefer D.A., Collins D.J. and McDermid I.S., 1986. In vivo fluorescence excitation and absorption spectra of marine phytoplankton. J. Plankton Res., 8, 197–214. [CrossRef] [Google Scholar]
  • Staehr P.A., Henricksen P. and Markager S., 2002. Photoacclimation of four marine phytoplankton species to irradiance and nutrient availability. Mar. Ecol. Progr. Ser., 238, 47–59. [CrossRef] [Google Scholar]
  • Tadonléké R.D., Jugnia L.B., Sime-Ngando T., Zebaze S. and Nola M., 1998. Short-term vertical distribution of phytoplankton populations in a shallow tropical lake (Lake Municipal, Yaounde, Cameroon). Arch. Hydrobiol., 143, 469–485. [Google Scholar]
  • Takano H., Arai T., Hirano M. and Matsunaga T., 1995. Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG-042902. Appl. Microbiol. Biotechnol., 43, 1014–1018. [CrossRef] [Google Scholar]
  • ter Braak C.J.F., 1986. Canonical correspondence analysis: A new eigenfactor technique for multivariate direct gradient analysis. Ecology, 67, 1167–1179. [CrossRef] [Google Scholar]
  • ter Braak C.J.F., 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio, 64, 69–77. [CrossRef] [Google Scholar]
  • Thyssen M., Mathieu D., Garcia N. and Denis M., 2008. Short-term variation of phytoplankton assemblages in Mediterranean coastal waters recorded with an automated submerged cytometer. J. Plankton Res., 30, 1027–1040. [CrossRef] [Google Scholar]
  • Tilmann D., Kiesling R., Sterner R., Kilham S. and Johnson F.A., 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol., 106, 473–485. [Google Scholar]
  • Trees C.C., Clark D.K., Bidigare R.R., Ondrusek M.E. and Mueller J.L., 2000. Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnol. Oceanog., 45, 1130–1143. [CrossRef] [Google Scholar]
  • Twiss M. and McLeod I., 2008. Phytoplankton community assessment in eight Lake Ontario tributaries made using fluorimetric methods. Aquat. Ecosyst. Health Manag., 11, 422–431. [CrossRef] [Google Scholar]
  • Utermöhl H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Mitteillungen der Internationalen Vereinigung für Limnologie, 9, 1–38. [Google Scholar]
  • Vollenweider R.A. and Kerekes J., 1982. Eutrophication of waters. Monitoring, assessment and control. OECD Cooperative Programme on monitoring of inland waters (Eutrophication control), Environment Directorate, OECD, Paris. [Google Scholar]
  • Vörös L. and Padisák J., 1991. Phytoplankton biomass and chlorophyll a in some shallow lakes in central Europe. Hydrobiologia, 215, 111–119. [Google Scholar]
  • Wetzel R.G. and Likens G.E., 2000. Limnological Analyses, 3rd edition, Springer, London. [Google Scholar]
  • Wolfram G., Dokulil M.T., Pall K., Reichmann M., Schulz L., Argillier C., de Bortoli J., Martinez P.-J., Rioury C., Hoehn E., Riedmüller U., Schaumburg J., Stelzer D., Buzzi F., Dalmi A., Morabito G., Marchetto A., Remec-Rekar Š. and Urbanic G., 2007. Intercalibration Exercise, Technical Report + Annexes, Alpine GIG (Lakes), Vienna – Ispra. [Google Scholar]
  • Wright S.W. and Jeffrey S.W., 1987. Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar. Ecol. Progr. Ser., 38, 259–266. [CrossRef] [Google Scholar]
  • Yentsch C.S. and Yentsch C.M., 1979. Fluorescence spectral signatures: The characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res., 37, 471–483. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.