Open Access
Issue
Knowl. Managt. Aquatic Ecosyst.
Number 388, 2008
Article Number 05
Number of page(s) 14
DOI https://doi.org/10.1051/kmae:2008008
Published online 20 September 2008
  • Braum E., 1963. Die ersten Beutefanghandlungen junger Blaufelchen (Coregonus wartmanni Bloch) und Hechte (Esox lucius L.). Zeitschr. F. Tierpsychol., 20, 257–266. [Google Scholar]
  • Braum E., 1978. Ecological aspects of the survival of fish eggs, embryos and larvae. In: Gerking S.D. (ed.), Ecology of freshwater fish production, Blackwell Scientific Publications, Oxford, 102–131. [Google Scholar]
  • Browman H.I. and O’Brien W.J., 1992. Foraging and prey search behaviour of golden shiner (Notemigonus crysoleucas) larvae. Can. J. Fish Aquat. Sci., 49, 813–819. [CrossRef] [Google Scholar]
  • Burdick D.S., Hartline D.K. and Lenz P.H., 2007. Escape strategies in co-occurring calanoid copepods. Limnol. Oceanogr., 52, 6, 2373–2385. [CrossRef] [Google Scholar]
  • Buskey E.J. and Hartline D.K., 2003. High-speed video analysis of the escape responses of the copepod Acartia tonsa to shadows. Biol. Bull., 204, 28–37. [CrossRef] [PubMed] [Google Scholar]
  • Caparroy P., Thygesen U.H. and Visser A.W., 2000. Modelling the attack success of planktonic predators: patterns and mechanisms of prey size selectivity. J. Plank. Res., 22, 1871–1900. [CrossRef] [Google Scholar]
  • Coughlin D.J., 1993. Prey location by clownfish (Amphiprion perideraion) larvae feeding on rotifers (Brachionus plicatilis). J. Plank. Res., 15, 2, 117–123. [CrossRef] [Google Scholar]
  • Coughlin D.J., 1994. Suction prey capture by clownfish larvae (Amphiprion perideraion). Copeia, 1, 242–246. [CrossRef] [Google Scholar]
  • Coughlin D.J., Strickler J.R. and Anderson B.S., 1992. Swimming and search behaviour in clownfish, Amphiprion perideraion, larvae. Anim. Behav., 44, 427–440. [CrossRef] [Google Scholar]
  • Domínguez-Domínguez O., Nandini S. and Sarama S.S.S., 2002. Larval feeding behaviour of the endangered fish golden bubblebee goodeid, Allotoca dugesi, implications for conservation of an endangered species. Fisheries Manag. Ecol., 9, 285–291. [CrossRef] [Google Scholar]
  • Drost R.M., 1987. Relation between aiming and catch success in larval fishes. Can. J. Fish Aquat. Sci., 44, 304–315. [CrossRef] [Google Scholar]
  • Drost R.M. and Van Den Boogaart J.G.M., 1986. The energetics of feeding strikes in larval carp, Cyprinus carpio. J. Fish Biol., 29, 371–379. [CrossRef] [Google Scholar]
  • Fields D.M. and Yen J., 1997. The escape behavior of marine copepods in response to a quantifiable fluid mechanical disturbance. J. Plank. Res., 19, 9, 1289–1304. [CrossRef] [Google Scholar]
  • Georgalas V., Malavasi S., Franzoi P. and Torricelli P., 2007. Swimming activity and feeding behaviour of larval European sea bass (Dicentrarchus labrax L.): Effects of ontogeny and increasing food density, Aquaculture, 264, 1–4, 418–427. [Google Scholar]
  • Gerdeaux D., 2004. The recent restoration of the whitefish fisheries in Lake Geneva: the roles of stocking, reoligotrophication, and climate change. Ann. Zool. Fennici., 41, 181–189. [Google Scholar]
  • Gerdeaux D., Anneville O. and Hefti D., 2006. Fishery changes during re-oligotrophication in 11 peri-alpine Swiss and French lakes over the past 30 years. Acta Oecol., 30, 2, 161–167. [CrossRef] [Google Scholar]
  • Heath M.R., 1993. The role of escape reactions in determining the size distribution of prey captured by herring larvae. Environ. Biol. Fish., 38, 331–344. [CrossRef] [Google Scholar]
  • Helminen H., Sarvala J. and Karjalainen J., 1997. Patterns in vendace recruitment in Lake Pyhäjärvi, south-west Finland. J. Fish Biol., 51 (Supp. A), 303–316. [Google Scholar]
  • Heuch P.A., Doall M.H. and Yen J., 2007. Water flow around a fish mimic attracts a parasitic and deters a planktonic copepod. J. Plank. Res., 29 (Supp. 1), i3–i16. [Google Scholar]
  • Hwang J.-S. and Strickler J.R., 1994. Effects of periodic turbulent events upon escape responses of a calanoid copepod, Centropages hamatus. Bull. Plank. Soc. Japan, 41, 2, 117–130. [Google Scholar]
  • Hwang J.-S. and Strickler J.R., 2001. Can copepods differentiate prey from predators hydromechanically? Zool. Stud., 40, 1, 1–6. [Google Scholar]
  • Janssen J., 1981. Searching for zooplankton just outside Snell’s window. Limnol. Oceanogr., 26, 6, 1168–1171. [CrossRef] [Google Scholar]
  • Karjalainen J., Auvinen H., Helminen H., Marjomäki T.J., Niva T., Sarvala J. and Viljanen M., 2000. Unpredictability of fish recruitment: interannual variation in young-of-the-year abundance. J. Fish Biol., 56, 837–857. [CrossRef] [Google Scholar]
  • Kiørboe T. and Visser A.W., 1999. Predator and prey perception in copepods due to hydromechanical signals. Mar. Ecol. Prog. Ser., 179, 81–95. [CrossRef] [Google Scholar]
  • Kiørboe T., Saiz E. and Visser A.W., 1999. Hydrodynamic signal perception in the copepod Acartia tonsa. Mar. Ecol. Prog. Ser., 179, 97–111. [CrossRef] [Google Scholar]
  • Koutsikopoulos C. and le Cann B., 1996. Physical and hydrological structures related to the Bay of Biscay anchovy. In: Palomera I. and Rubies P. (eds.), The european anchovy and its environment, Sci. Mar., 60 (Supp. 2), 9–19. [Google Scholar]
  • Landry F., Miller T.J. and Legget W.C., 1995. The effects of small-scale turbulence on the ingestion rate of fathead minnow (Pimephales promelas). Can. J. Fish Aquat. Sci., 52, 1714–1719. [CrossRef] [Google Scholar]
  • Luczynski M., Falkowski S. and Kopecki T., 1988. Larval development in four coregonid species (Coregonus albula, C. lavaretus, C. muksumand, C. peled). Finnish Fish. Res., 9, 61–69. [Google Scholar]
  • MacKenzie B.R. and Kiørboe T., 1995. Encounter rates and swimming behaviour of pause travel and cruise larval fish predators in calm and turbulent environments. Limnol. Oceanogr., 40, 1278–1289. [CrossRef] [Google Scholar]
  • MacKenzie B.R. and Kiørboe T., 2000. Larval fish feeding and turbulence: A case for the downside. Limnol. Oceanogr., 45, 1, 1–10. [CrossRef] [Google Scholar]
  • Marttunen M. and Vehanen T., 2004. Toward adaptive management: The impacts of different management strategies on fish stocks and fisheries in a large regulated lake. Environ. Manage., 33, 6, 840–854. [CrossRef] [PubMed] [Google Scholar]
  • Morales-Ventura J., Nandini S. and Sarma S.S.S., 2004. Functional responses during the early larval stages of the charal fish Chirostoma riojai (Pices: Atherinidae) fed rotifers and cladocerans. J. Appl. Ichtyol., 20, 417–421. [CrossRef] [Google Scholar]
  • Müller R., 1992. Trophic state and its implications for natural reproduction of salmonid fish. Hydrobiologia, 243/244, 261–268. [Google Scholar]
  • Munk P., 2007. Cross-frontal variation in growth rate and prey availability of larval North Sea cod Gadus morhua. Mar. Ecol. Prog. Ser., 334, 225–235. [CrossRef] [Google Scholar]
  • Munk P. and Kiørboe T., 1985. Feeding behavior and swimming activity of larval herring Clupea harengus in relation to density of copepod nauplii. Mar. Ecol. Prog. Ser., 24, 15–22. [CrossRef] [Google Scholar]
  • Pasternak A.F., Mikheev V.N. and Wanzenböck J., 2006. How plankton copepods avoid fish predation: from individual responses to variation of the life cycle. Journal of Ichtyology, 46 (Supp. 2), s220–s226. [Google Scholar]
  • Rao T.R., 2003. Ecological and ethological perspectives in larval fish feeding. J. Appl. Aquac., 13, 1–2, 145–178. [Google Scholar]
  • Sarma S.S.S., Amador Lopez-Romulo J. and Nandini S., 2003. Larval feeding behaviour of blind fish Astyanax fasciatus (Characidae), black tetra Gymnocorymbus ternetzi (Characidae) and angel fish Pterophyllum scalare (Cichlidae) fed zooplankton. Hydrobiologia, 510, 207–216. [CrossRef] [Google Scholar]
  • Seuront L., Yamazaki H. and Souissi S., 2004a. Hydrodynamic disturbance and zooplankton swimming behavior. Zool. Stud., 43, 2, 376–387. [Google Scholar]
  • Seuront L., Brewer M. and Strickler J.R., 2004b. Quantifying zooplankton swimming behavior: the question of scale. In: Seuront L. and Strutton P.G. (eds.), Handbook of scaling methods in aquatic ecology: measurement, analysis, simulation, CRC Press, Boca Raton, FL, 333–359. [Google Scholar]
  • Sirois P. and Dorson J.J., 2000. Critical periods and growth-dependent survival of larvae of an estuarine fish, the rainbow smelt Osmerus mordax. Mar. Ecol. Prog. Ser., 203, 233–245. [CrossRef] [Google Scholar]
  • Thetmeyer H. and Kils U., 1995. To see and not to be seen: the visibility of predator and prey with respect to feeding behaviour. Mar. Ecol. Prog. Ser., 126, 1–8. [CrossRef] [Google Scholar]
  • Uttieri M., Nihongi A., Mazzocchi M.G., Strickler J.R. and Zambianchi E., 2007a. Pre-copulatory swimming behavior of Leptodiaptomus ashlandi (Copepoda: Calanoida): a fractal approach. J. Plank. Res., 29 (Supp. 1) i17–i26. [Google Scholar]
  • Uttieri M., Cianelli D., Strickler J.R. and Zambianchi E., 2007b. On the relationship between fractal dimension and encounters in three-dimensional trajectories. J. Theor. Biol., 247, 480–491. [CrossRef] [PubMed] [Google Scholar]
  • Viitasalo M., Kiørboe T., Flinkman J., Pedersen L.W. and Visser A.W., 1998. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Mar. Ecol. Prog. Ser., 175, 129–142. [CrossRef] [Google Scholar]
  • Wagget R.G. and Buskey E.J., 2007. Copepod escape behavior in non-turbulent and turbulent hydrodynamic regimes. Mar. Ecol. Prog. Ser., 334, 193–198. [CrossRef] [Google Scholar]
  • Wanzenböck J., 1992. Ontogeny of prey attack behavior in larvae and juveniles of three european cyprinids. Environ. Biol. Fish., 33, 23–32. [CrossRef] [Google Scholar]
  • Yen J. and Strickler J.R., 1996. Advertisement and concealment in the plankton: What makes a copepod hydrodynamically conspicuous? Invert. Biol., 115, 191–205. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.