Open Access
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Topical issue on Ecological, evolutionary and environmental implications of floating photovoltaics
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 18 | |
DOI | https://doi.org/10.1051/kmae/2025008 | |
Published online | 06 May 2025 |
- Amorim LF, Duarte BPDS, Martins JRS. 2023. Comparison between methods to predict climate change impacts on tropical shallow lakes. J Water Clim Change 14: 4299–4313. [CrossRef] [Google Scholar]
- Benjamins S, Williamson B, Billing S-L, Yuan Z, Collu M, Fox C, Hobbs L, Masden EA, Cottier-Cook EJ, Wilson B. 2024. Potential environmental impacts of floating solar photovoltaic systems. Renew Sustain Energy Rev 199: 114463. [CrossRef] [Google Scholar]
- Bundesamt für Justiz. 2023. §36 WHG − Einzelnorm. Available from: https://www.gesetze-im-internet.de/whg_2009/__36.html (last consult: 2024/10/10).Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
- Château P-A, Wunderlich RF, Wang T-W, Lai H-T, Chen C-C, Chang F-J. 2019. Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Science of The Total Environment 687: 654–666. [CrossRef] [Google Scholar]
- Connelly NA, O'Neill CR, Knuth BA, Brown TL. 2007. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities. Environmental Management 40: 105–112. [CrossRef] [PubMed] [Google Scholar]
- Dalderup T, Van Leijsen M, Meppelink M, Van den Oord T, Richardson T, Verdonk M, Van Zeil V. 2020. Aquaculture activities in energy storage lake: advice for cultivating shellfish and seaweed in combination with a floating solar park. Aquaculture in Delta21 Energy Storage Lake Final Report. Available from: https://www.delta21.nl/wp-content/uploads/2020/06/AQUACULTUUR-rapport.pdf [Google Scholar]
- de Lima RLP, Paxinou K, Boogaard F C., Akkerman O, Lin FY. 2021. In-situ water quality observations under a large-scale floating solar farm using sensors and underwater drones. Sustainability 13: 6421. [CrossRef] [Google Scholar]
- Deltares. 2024. Delft3D-FLOW: transport phenomena, including sediments − User manual hydro-morphodynamics. [Google Scholar]
- Diggins T.P. 2001. A seasonal comparison of suspended sediment filtration by quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. J Great Lakes Res 27: 457–466. [CrossRef] [Google Scholar]
- Exley, G., Armstrong, A., Page, T., Jones, I.D. 2021. Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Solar Energy 219:, 24–33. [CrossRef] [Google Scholar]
- Exley G, Page T, Thackeray SJ, Folkard AM, Couture R-M, Hernandez RR, Cagle AE, Salk KR, Clous L, Whittaker P, Chipps M, Armstrong, A. 2022. Floating solar panels on reservoirs impact phytoplankton populations: A modelling experiment. Journal of Environmental Management 324, 116410. [CrossRef] [PubMed] [Google Scholar]
- Goulart, C.B., Bleninger, T., de Oliveira Fagundes, H., Fan, F.M. 2023. Modeling uncertainties of reservoir flushing simulations. International Journal of Sediment Research 38, 698–710. [CrossRef] [Google Scholar]
- Gren, I.-M., Lindahl, O., Lindqvist, M. 2009. Values of mussel farming for combating eutrophication: An application to the Baltic Sea. Ecological Engineering 35, 935–945. [CrossRef] [Google Scholar]
- Haag, W.R., Williams, J.D., 2014. Biodiversity on the brink: an assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735, 45–60. [CrossRef] [Google Scholar]
- Haas, J., Khalighi, J., De La Fuente, A., Gerbersdorf, S.U., Nowak, W., Chen, P.-J. 2020. Floating photovoltaic plants: Ecological impacts versus hydropower operation flexibility. Energy Conversion and Management 206: 112414. [Google Scholar]
- Hansson L.-A., Johansson L., Persson L. 1987. Effects of fish grazing on nutrient release and succession of primary producers. Limnol Oceanogr 32: 723–729. [CrossRef] [Google Scholar]
- Hipsey M.R. 2022. Modelling aquatic eco-dynamics: Overview of the AED modular simulation platform. Available from: https://doi.org/10.5281/ZENODO6516222 [Google Scholar]
- Hipsey M.R., Bruce L.C., Boon C., Busch B., Carey C.C., Hamilton D.P., Hanson P.C., Read J.S., de Sousa E., Weber M., Winslow L.A. 2019. A general lake model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geosci. Model Dev. 12: 473–523. [CrossRef] [Google Scholar]
- Idso S.B. 1973. On the concept of lake stability. Limnol. Oceanogr. 18: 681–683. [Google Scholar]
- Ilgen, K., Schindler, D., Wieland, S., Lange, J., 2023. The impact of floating photovoltaic power plants on lake water temperature and stratification. Sci Rep 13:, 7932. [CrossRef] [PubMed] [Google Scholar]
- Ishikawa M., Gonzalez W., Golyjeswski O., Sales G., Rigotti J.A., Bleninger T., Mannich M., Lorke A. 2022. Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs. Geosci. Model Dev. 15: 2197–2220. [CrossRef] [Google Scholar]
- Ji Q., Li K., Wang Y., Feng J., Li R., Liang R. 2022. Effect of floating photovoltaic system on water temperature of deep reservoir and assessment of its potential benefits: a case on Xiangjiaba Reservoir with hydropower station. Renewable Energy 195: 946–956. [Google Scholar]
- Kakoulaki G., Gonzalez Sanchez R.Gracia Amillo A. Szabo S. De Felice M. Farinosi F. De Felicek L. Bisselin B. Seliger R. Kougias I. Jaeger-Waldau A. 2023. Benefits of pairing floating solar photovoltaics with hydropower reservoirs in Europe. Renewable and Sustainable Energy Reviews 171: 112989. [CrossRef] [Google Scholar]
- Karpouzoglou T., Vlaswinkel B., van der Molen J. 2020. Effects of large-scale floating (solar photovoltaic) platforms on hydrodynamics and primary production in a coastal sea from a water column model. Ocean Science 16: 195–208. [CrossRef] [Google Scholar]
- Ladwig R, Hanson PC, Dugan HA, Carey CC, Zhang Y, Shu L, Duffy CJ, Cobourn KM. 2021. Lake thermal structure drives interannual variability in summer anoxia dynamics in a eutrophic lake over 37 years. Hydrol Earth Syst Sci 25: 1009–1032. [CrossRef] [Google Scholar]
- Lee N, Grunwald U, Rosenlieb E, Mirletz H, Aznar A, Spencer R, Cox S. 2020. Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential. Renewable Energy 162: 1415–1427. [CrossRef] [Google Scholar]
- Lei J, Payne BS, Wang SY. 1996. Filtration dynamics of the zebra mussel, Dreissena polymorpha. Can. J. Fish. Aquat. Sci. 53: 29–37. [CrossRef] [Google Scholar]
- Li W, Wang Y, Wang G, Liang Y, Li C, Svenning JC. 2023. How do rotifer communities respond to floating photovoltaic systems in the subsidence wetlands created by underground coal mining in China? J. Environ. Manag. 339: 117816. [CrossRef] [Google Scholar]
- Liu X, Zhang Y, Shi K, Lin J, Zhou Y, Qin B. 2016. Determining critical light and hydrologic conditions for macrophyte presence in a large shallow lake: The ratio of euphotic depth to water depth. Ecol. Indic. 71: 317–326. [CrossRef] [Google Scholar]
- Matthews J, Van der Velde G, Bij de Vaate A, Collas FPL, Koopman KR, Leuven RSEW. 2014. Rapid range expansion of the invasive quagga mussel in relation to zebra mussel presence in The Netherlands and Western Europe. Biol. Invasions 16: 23–42. [CrossRef] [Google Scholar]
- Mollema, Pauline N., and Marco Antonellini. 2016. Water and (bio) chemical cycling in gravel pit lakes: A review and outlook. Earth-Science Reviews 159: 247–270 [CrossRef] [Google Scholar]
- NASA. 2023. POWER | Data Access Viewer [WWW Document]. Available from: https://power.larc.nasa.gov/data-access-viewer/ (accessed 3 August 2023). [Google Scholar]
- Nobre R, Boulêtreau S, Colas F, Azemar F, Tudesque L, Parthuisot N, Favriou P, Cucherousset J. 2023. Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning. Renewable and Sustainable Energy Reviews 188: 113852. [CrossRef] [Google Scholar]
- Nobre R, Rocha SM, Healing S, Ji Q, Boulêtreau S, Armstrong A, Cucherousset J. 2024. A global study of freshwater coverage by floating photovoltaics. Solar Energy 267: 112244. [CrossRef] [Google Scholar]
- Nobre RLG, Vagnon C, Boulêtreau S, Colas F, Azémar F, Tudesque L, Parthuisot N, Millet P, Cucherousset J. 2025. Floating photovoltaics strongly reduce water temperature: A whole-lake experiment. Journal of Environmental Management 375: 124230. [CrossRef] [PubMed] [Google Scholar]
- O'Beirne MD, Werne JP, Hecky RE, Johnson TC, Katsev S, Reavie ED, 2017. Anthropogenic climate change has altered primary productivity in Lake Superior. Nature communications 8: 15713. [CrossRef] [PubMed] [Google Scholar]
- Ogunjo S, Olusola A, Olusegun C. 2023. Potential of using floating solar photovoltaic and wind farms for sustainable energy generation in an existing hydropower station in Nigeria. Clean Techn Environ Policy 25: 1921–1934. [CrossRef] [Google Scholar]
- Orlova MI, Muirhead JR, Antonov PI, Shcherbina GK, Starobogatov YI, Biochino GI, Therriault TW, MacIsaac HJ. 2004. Range expansion of quagga mussels Dreissena rostriformis bugensis in the Volga River and Caspian Sea basin. Aquatic Ecology 38: 561–573. [CrossRef] [Google Scholar]
- Parsapour-Moghaddam P, Rennie Cd. 2017. Hydrostatic versus nonhydrostatic hydrodynamic modelling of secondary flow in a tortuously meandering river: Application of Delft3D. River Research and Applications 33: 1400–1410. [CrossRef] [Google Scholar]
- Petersen JK, Hasler B, Timmermann K, Nielsen P, Tørring DB, Larsen MM, Holmer M. 2014. Mussels as a tool for mitigation of nutrients in the marine environment. Marine Pollution Bulletin 82: 137–143. [CrossRef] [PubMed] [Google Scholar]
- Ray NE, Holgerson MA, Grodsky SM. 2024. Immediate effect of floating solar energy deployment on greenhouse gas dynamics in ponds. Environmental Science & Technology 58: 22104–22113. [CrossRef] [PubMed] [Google Scholar]
- Roditi HA, Caraco NF, Cole JJ, Strayer DL. 1996. Filtration of Hudson River water by the zebra mussel (Dreissena polymorpha). Estuaries 19: 824. [CrossRef] [Google Scholar]
- Rowe MD, Anderson EJ, Vanderploeg HA, Pothoven SA, Elgin AK, Wang J, Yousef F. 2017. Influence of invasive quagga mussels, phosphorus loads, and climate on spatial and temporal patterns of productivity in Lake Michigan: A biophysical modeling study. Limnology and Oceanography 62: 2629–2649. [CrossRef] [Google Scholar]
- Schmidt W. 1928. Über die Temperatur und Stabilitätsverhältnisse von Seen. Geografiska Annaler 10: 145–177. [Google Scholar]
- Schwoerbel J, Brendelberger H. 2013. Einführung in die Limnologie, 10th ed.Berlin Heidelberg: Springer Spektrum. [Google Scholar]
- Son M. 2007. Native range of the zebra mussel and quagga mussel and new data on their invasions within the Ponto-Caspian Region. AI 2:, 174–184. [CrossRef] [Google Scholar]
- Soto D, Mena G. 1999. Filter feeding by the freshwater mussel, Diplodon chilensis, as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65–81. [CrossRef] [Google Scholar]
- van de Weyer K, Stelzer D. 2021. Handlungsanweisung zur WRRL-Bewertung von Makrophyten in Seen nach dem NRW-Verfahren. Available from: https://www.laenderfinanzierungsprogramm.de/static/LFP/Dateien/LAWA/AO/O_2.20_Handlungsanweisung%20NRW%20Verfahren%20Makrophyten%20Seen%20WRRL%20Stand%20Oktober%202021.pdf. [Google Scholar]
- Varelas K, Auger A, Brockhoff D, Hansen N, ElHara OA, Semet Y, Kassab R, Barbaresco F. 2018. A comparative study of large-scale variants of CMA-ES, in: Parallel Problem Solving from Nature-PPSN XV: 15th International Conference, Coimbra, Portugal, September 8-12, 2018, Proceedings, Part I 15. Springer, pp. 3–15. Available from: https://doi.org/10.1007/978-3-319-99253-2_1. [CrossRef] [Google Scholar]
- Ward, G.J. 1994. The RADIANCE lighting simulation and rendering system. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques − SIGGRAPH '94. Presented at the 21st annual conference, ACM Press, Not Known, pp. 459–472. [Google Scholar]
- Wegner, B., Kronsbein, A.L., Gillefalk, M., van de Weyer, K., Köhler, J., Funke, E., Monaghan, M.T., Hilt, S. 2019. Mutual facilitation among invading Nuttall's waterweed and quagga mussels. Front. Plant Sci. 10. Available from: https://doi.org/10.3389/fpls.2019.00789. [Google Scholar]
- Winslow, L., Albers, S., DougCollinge, Read, J.S., Leach, T., Zwart, J., Snortheim. 2018. Gleon/Rlakeanalyzer: Rlakeanalyzer 1.11.4. Available from: https://doi.org/10.5281/ZENODO.1198428. [Google Scholar]
- Wirth, H., Eggers, J.-B., Trommsdorf, M., Neuhaus, H., Heinrich, M., Wieland, S., Schill, C. 2021. Potenziale der Integrierten Photovoltaik in Deutschland. Fraunhofer ISE, Freiburg. Available from: https://www.ise.fraunhofer.de/de/geschaeftsfelder/solarkraftwerke-und-integrierte-photovoltaik/integrierte-photovoltaik.html. [Google Scholar]
- Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O'Reilly CM, Sharma S. 2020. Global lake responses to climate change. Nature Reviews Earth & Environment 1: 388–403. [CrossRef] [Google Scholar]
- World Bank Group, ESMAP, SERIS. 2019a. Where Sun Meets Water: Floating Solar Handbook for Practitioners. WorldBank, Washington DC. Available from: http://documents.worldbank.org/curated/en/418961572293438109/Where-Sun-Meets-Water-Floating-Solar-Handbook-for-Practitioners [Google Scholar]
- World Bank Group, Energy Sector Management Assistance Program, Solar Energy Research Institute of Singapore. 2019b. Where sun meets water − floating solar market report. © World Bank, Washington, DC. Available from: http://documents.worldbank.org/curated/en/579941540407455831/Floating-Solar-Market-Report-Executive-Summary [Google Scholar]
- Xia Z, Li Y, Guo S, Chen R, Zhang W, Zhang P, Du P. 2023. Mapping global water-surface photovoltaics with satellite images. Renewable and Sustainable Energy Reviews 187: 113760. [CrossRef] [Google Scholar]
- Yang P, Chua LHC, Irvine KN, Nguyen MT, Low EW. 2022. Impacts of a floating photovoltaic system on temperature and water quality in a shallow tropical reservoir. Limnology 23: 441–454. [CrossRef] [Google Scholar]
- Yu N, Culver DA. 2001. Estimating the effective clearance rate and refiltration by zebra mussels, Dreissena polymorpha, in a stratified reservoir. Freshwater Biology 41: 481–492. [Google Scholar]
- Yuan LL. 2021. Continental-scale effects of phytoplankton and non-phytoplankton turbidity on macrophyte occurrence in shallow lakes. Aquatic sciences 83: 14. [CrossRef] [Google Scholar]
- Zambrano L, Hinojosa D. 1999. Direct and indirect effects of carp (Cyprinus carpio L.) on macrophyte and benthic communities in experimental shallow ponds in central Mexico. Hydrobiologia 408: 131–138. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.