Open Access
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Riparian ecology and management
|
|
---|---|---|
Article Number | 5 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/kmae/2024022 | |
Published online | 31 January 2025 |
- Albayrak PI, Maddahi M, Rachelly C, Detert M, Peter A, Milzow C, Tuhtan J, Schwarzwälder K, Ruther N, Doessegger A. 2018. TEST-CASE: HPP Schiffmühle, Switzerland. FIThydro report. [Google Scholar]
- Amaral S, Branco P, Romão F, Ferreira M, Pinheiro A, Santos J. 2021. Evaluation of low-head ramped weirs for a potamodromous cyprinid: effects of substrate addition and discharge on fish passage performance, stress and fatigue. Water 13: 765. [CrossRef] [Google Scholar]
- Amaral SD, Quaresma AL, Branco P, Romão F, Katopodis C, Ferreira MT, Pinheiro AN, Santos JM. 2019. Assessment of retrofitted ramped weirs to improve passage of potamodromous fish. Water 11: 2441. [CrossRef] [Google Scholar]
- Benitez J-P, Ovidio M. 2018. The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecol Freshw Fish 660–671. [CrossRef] [Google Scholar]
- Benitez J-P, Nzau Matondo B, Dierckx A, Ovidio M. 2015. An overview of potamodromous fish upstream movements in medium-sized rivers, by means of fish passes monitoring. Aquat Ecol 49: 481–497. [CrossRef] [Google Scholar]
- Britton JR, Pegg J. 2011. Ecology of European Barbel Barbus Barbus: implications for river, fishery, and conservation management. Rev Fish Sci 19: 321–330. [CrossRef] [Google Scholar]
- Bunt CM, Castro-Santos T, Haro A. 2012. Performance of fish passage structures at upstream barriers to migration. River Res Appl 28: 457–478. [CrossRef] [Google Scholar]
- Calles EO, Greenberg LA. 2007. The use of two nature-like fishways by some fish species in the Swedish River Emån. Ecol Freshw Fish 16: 183–190. [Google Scholar]
- Cano-Barbacil C, Radinger J, Argudo M, Rubio-Gracia F, Vila-Gispert A, García-Berthou E. 2020. Key factors explaining critical swimming speed in freshwater fish: a review and statistical analysis for Iberian species. Sci Rep 10: 18947. [CrossRef] [PubMed] [Google Scholar]
- Cassan L, Laurens P. 2016. Design of emergent and submerged rock-ramp fish passes. Knowl Manag Aquat Ecosyst 45. [CrossRef] [EDP Sciences] [Google Scholar]
- Chasserieau C. 2020. Suivi du franchissement piscicole de l’ouvrage du Pont SNCF de Marignier (Giffre). No. Rapport FDP74.20/02. [Google Scholar]
- Clay CH, Eng P. 1995. Design of Fishways and Other Fish Facilities, CRC Press, 248 p. [Google Scholar]
- Costa-Dias S, Sousa R, Lobón-Cerviá J, Laffaille P. 2009. The decline of diadromous fish in Western Europe inland waters: mains causes and consequence. Fish Manag Econ Perspect Nova Sci Publ 67–92. [Google Scholar]
- De Leeuw JJ, Winter HV. 2008. Migration of rheophilic fish in the large lowland rivers Meuse and Rhine, the Netherlands. Fish Manag Ecol 15: 409–415. [CrossRef] [Google Scholar]
- Directive 2000/60/CE. 2000. Directive 2000/60/CE du Parlement européen et du Conseil du 23 octobre 2000 établissant un cadre pour une politique communautaire dans le domaine de l’eau. J Off Communautés Eur 327: 1–72. [Google Scholar]
- Dodd JR, Cowx IG, Joyce DA, Bolland JD. 2024. Can’t pass or won’t pass: the importance of motivation when quantifying improved connectivity for riverine brown trout. J Fish Biol 104: 851–865. [CrossRef] [PubMed] [Google Scholar]
- Dorchies D, Chouet M, Grand F, Cassan L, Richard S, Courret D. 2022. Cassiopée: tools for designing fish crossing devices for upstream and downstream migrations, and hydraulic calculation tools for environmental and agricultural engineering. Version 4.17.0, https://doi.org/10.15454/TLO5LX, Recherche Data Gouv, V1. [Google Scholar]
- Forty M, Spees J, Lucas MC. 2016. Not just for adults! Evaluating the performance of multiple fish passage designs at low-head barriers for the upstream movement of juvenile and adult trout Salmo trutta. Ecol Eng 94: 214–224. [CrossRef] [Google Scholar]
- Fuller MR, Doyle MW, Strayer DL. 2015. Causes and consequences of habitat fragmentation in river networks: River fragmentation. Ann N Y Acad Sci 1355: 31–51. [CrossRef] [PubMed] [Google Scholar]
- Grimardias D, Chasserieau C, Beaufils M, Cattanéo F. 2022. Ecological connectivity of the upper Rhône River: Upstream fish passage at two successive large hydroelectric dams for partially migratory species. Ecol Eng 178: 106545. [CrossRef] [Google Scholar]
- Hershey H. 2021. Updating the consensus on fishway efficiency: A meta-analysis. Fish Fish 22: 735–748. [CrossRef] [Google Scholar]
- Keith P, Poulet N, Denys G, Changeux T, Feunteun E, Persat H. 2020. Les poissons d’eau douce de France, Paris, 704 p. [Google Scholar]
- Larinier M. 1998. Upstream and downstream fish passage experience in France. In Jungwirth M, Schmutz S, Weiss S, eds. Fish migration and fish bypasses, Oxford, England. 127–145. [Google Scholar]
- Larinier M, Courret D, Gomes P. 2006. Guide technique pour la conception des passes “naturelles.” No. Rapport GHAAPPE RA.06.05-V1. [Google Scholar]
- Latham J, Collen B, McRae L, Loh J. 2008. The living planet index for migratory species: an index of change in population abundance. Final Report for the Convention on the Conservation of Migratory Species, London. [Google Scholar]
- Lucas MC. 2000. The influence of environmental factors on movements of lowland-river fish in the Yorkshire Ouse system. Sci Total Environ 251-252: 223–232. [CrossRef] [PubMed] [Google Scholar]
- Lucas MC, Baras E, Thom TJ, Duncan A, Slavik O. 2001. Migration of Freshwater Fishes, 420 p. [Google Scholar]
- McKenzie DJ. 2011. SWIMMING AND OTHER ACTIVITIES | Energetics of Fish Swimming. In: Farrell AP, ed. Encyclopedia of Fish Physiology Academic Press, San Diego. 1636–1644. [CrossRef] [Google Scholar]
- Miranda FC, Cassan L, Laurens P, Tran TD. 2021. Study of a Rock-Ramp Fish Pass with Staggered Emergent Square Obstacles. [Google Scholar]
- NF EN 17233. 2021. Water quality − Guidance for assessing the efficiency and related metrics of fish passage solutions using telemetry. The European Committee for Standardization CEN: Brussels, Belgium. [Google Scholar]
- Nilsson C. 2005. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 308: 405–408. [CrossRef] [PubMed] [Google Scholar]
- Noonan MJ, Grant JWA, Jackson CD. 2012. A quantitative assessment of fish passage efficiency. Fish Fish 13: 450–464. [CrossRef] [Google Scholar]
- Oberdorff T. 2022. Time for decisive actions to protect freshwater ecosystems from global changes. Knowl Manag Aquat Ecosyst 423: 19. [CrossRef] [EDP Sciences] [Google Scholar]
- Ovidio M, Sonny D, Watthez Q, Goffaux D, Detrait O, Orban P, Nzau Matondo B, Renardy S, Dierckx A, Benitez J-P. 2020. Evaluation of the performance of successive multispecies improved fishways to reconnect a rehabilitated river. Wetl Ecol Manag 28: 641–654. [CrossRef] [Google Scholar]
- Peňáz M, Baruš V, Prokeš M, Homolka M. 2002. Movements of barbel, Barbus barbus (Pisces: Cyprinidae). Folia Zool 51: 55–66. [Google Scholar]
- Peter A, Schoelzel N, Wilmsmeier L, Albayrak I, Bravo-Córdoba FJ, García-Vega A, Fuentes-Pérez JF, Valbuena-Castro J, Carazo-Cea O, Escudero-Ortega C, Sanz-Ronda FJ, Calluaud D, Pineau G, David L. 2022. The attractiveness of fishways and bypass facilities. In Rutschmann P, Kampa E, Wolter C, Albayrak I, David L, Stoltz U, Schletterer M, eds. Novel Developments for Sustainable Hydropower. Cham: Springer International Publishing, 61–81. [CrossRef] [Google Scholar]
- Prchalová M, Horky P, Slavík O, VetešNíK L, Halacka K. 2011. Fish occurrence in the fishpass on the lowland section of the River Elbe, Czech Republic, with respect to water temperature, water flow and fish size. Folia Zool 60: 104–114. [CrossRef] [Google Scholar]
- Puijenbroek PJTM, Buijse AD, Kraak MHS, Verdonschot PFM. 2019. Species and river specific effects of river fragmentation on European anadromous fish species. River Res Appl 35: 68–77. [CrossRef] [Google Scholar]
- R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. [Google Scholar]
- Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev Camb Philos Soc 94: 849–873. [CrossRef] [PubMed] [Google Scholar]
- Seliger C, Zeiringer B. 2018. River Connectivity, Habitat Fragmentation and Related Restoration Measures. In Schmutz S, Sendzimir J, eds. Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future, Springer International Publishing, Cham., 171–186. [CrossRef] [Google Scholar]
- Sun J, Tan J, Zhang Q, Shen Y, Shi J, Zhang H, Shi X. 2023. Attraction and passage efficiency for salmonids and non‐salmonids based on fishway: A meta‐analysis approach. River Res Appl rra. 4194. [Google Scholar]
- Vilizzi L, Copp GH, Carter MG, Peňáz M. 2006. Movement and abundance of barbel, Barbus barbus, in a mesotrophic chalk stream in England. Folia Zool 55: 183–197. [Google Scholar]
- Weibel D, Peter A. 2013. Effectiveness of different types of block ramps for fish upstream movement. Aquat Sci 251–260. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.