Issue
Knowl. Manag. Aquat. Ecosyst.
Number 426, 2025
Riparian ecology and management
Article Number 8
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2025003
Published online 25 April 2025
  • An GQ, Li JM, Lu HF, Guo ZH. 2022. Nitrogen-dependent luteolin effect on Microcystis growth and microcystin-pollution risk − Novel mechanism insights unveiled by comparative proteomics and gene expression. Environ Pollut 311: 119848. [CrossRef] [PubMed] [Google Scholar]
  • Dodder NG, Tai SS, Sniegoski LT, Zhang NF, Welch MJ. 2007. Certification of creatinine in a human serum reference material by GC-MS and LC-MS. Clin Chem 53: 1694–1699. [CrossRef] [PubMed] [Google Scholar]
  • Dong YN, Feng B, Wang BX, Guo M, Fan XY. 2018. Allelopathy of aqueous extract of cattail on Microcystis aeruginosa. J Ecol 37: 498–505 (abstract in Chinese). [Google Scholar]
  • Effiong K, Hu J, Xu CC, Tang T, Huang HM, Zeng JN, Xiao X. 2020. Sustainable utilization of agricultural straw for harmful algal blooms control: A review. J Renew Mater 8: 461–483. [CrossRef] [Google Scholar]
  • Gao XY, Xie W, Liu ZP. 2022. Algae control in oligotrophic surface water under the joint effect of nutritional competition and microbial algae-lytic substances. Environ Sci Water Res Technol 8: 375–384. [CrossRef] [Google Scholar]
  • Hao A, Sun Z, Shi X, Xia D, Liu X, Iseri Y. 2025. Allelopathic suppression of cyanobacterial blooms by the aquatic plant Vallisneria natans enhanced by red and blue LED light supplementation. Water 17: 131. [CrossRef] [Google Scholar]
  • Harris TD, Reinl KL, Azarderakhsh M, Berger SA, Berman MC, Bizic M, Bhattacharya R, Burnet SH, Cianci-Gaskill JA, Domis LNdS, Elfferich I, Ger KA, Grossart H-PF, Ibelings BW, Ionescu D, Kouhanestani ZM, Mauch J, McElarney YR, Nava V, North RL, Ogashawara I, Paule-Mercado MCA, Soria-Piriz S, Sun X, Trout-Haney JV, Weyhenmeyer GA, Yokota K, Zhan Q. 2024. What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors. Harmful Algae 133: 102599. [CrossRef] [PubMed] [Google Scholar]
  • Hou X, Feng L, Dai Y, Hu C, Gibson L, Tang J, Lee Z, Wang Y, Cai X, Liu J, Zheng Y, Zheng C. 2022. Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat Geosci 15: 130–134. [CrossRef] [Google Scholar]
  • Hu F, Liu JT, Yang P, Wen CY, Zhang LT, Zhang J. 2024. Spatial and temporal distribution characteristics of cyanobacteria and the driving factors in Poyang Lake. Resour Environ Yangtze Basin 33: 605–614. [Google Scholar]
  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nat Rev Microbiol 16: 471–483. [CrossRef] [PubMed] [Google Scholar]
  • Ji WT. 2017. Poyang Lake − Topography · Hydrology · Vegetation. Beijing: Science Press. [Google Scholar]
  • Jiang ML, Yang H, Liu H, Xu LG. 2023. Spatial distribution dataset of water eutrophication indicators in Poyang Lake during high flow period from 2021 to 2022. Science Data Bank 9: 1–8 [Google Scholar]
  • Jiang ZY, Guo PY, Chang CC, Gao LL, Li SX, Wan JJ. 2014. Effects of allelochemicals from Ficus microcarpa on Chlorella pyrenoidosa. Braz Arch Biol Technol 57: 595–605. [Google Scholar]
  • Kostina-Bednarz M, Plonka J, Barchanska H. 2023. Allelopathy as a source of bioherbicides: challenges and prospects for sustainable agriculture. Rev Environ Sci Biotechnol 22: 471–504. [CrossRef] [Google Scholar]
  • Kurashov E, Krylova J, Protopopova E. 2021. The use of allelochemicals of aquatic macrophytes to suppress the development of cyanobacterial blooms. In: Plankton Communities. London: IntechOpen. [Google Scholar]
  • Li B, Yang GS, Wan RR. 2020. Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): implications on eutrophication management. Environ Pollut 260: 114033. [CrossRef] [PubMed] [Google Scholar]
  • Li BH, Yin YJ, Kang LF, Feng L, Liu YZ, Du ZY, Tian YJ, Zhang LQ. 2021. A review: application of allelochemicals in water ecological restoration − algal inhibition. Chemosphere 267: 128869. [CrossRef] [PubMed] [Google Scholar]
  • Li D, Li P, Yan Z, Li N, Yao L, Cao L. 2022. Allelopathic inhibition of the extracts of Landoltia punctata on Microcystis aeruginosa. Plant Signal Behav 17: 2058256. [CrossRef] [PubMed] [Google Scholar]
  • Li XJ, Zhao WJ, Chen JQ, Wang F. 2023. Dosage impact of submerged plants extracts on Microcystis aeruginosa growth: from hormesis to inhibition. Ecolox Environ Safe 268: 115703. [CrossRef] [Google Scholar]
  • Liu XJ, Lu QF, Zhou Y, Li K, Xu Y, Lv Q, Qin JJ, Ouyang S, Wu XP. 2020. Community characteristics of phytoplankton and management implications in Poyang Lake Basin. Limnology 21: 207–218. [CrossRef] [Google Scholar]
  • Lou BF, Zhou Z, Su H, Zhuo HH. 2023. Temporal and spatial characteristics of key indicators of nutritional level and control standards in Lake Poyang. J Lake Sci 35: 897–908 (abstract in Chinese). [CrossRef] [Google Scholar]
  • Ma TT, Xiong LL, Zhang DW, Li KY, Hu ZJ, Wu ZS. 2021. Effects of decomposition of three plants on water quality during inundation period in Lake Poyang. J Lake Sci 33: 1389–1399 (abstract in Chinese). [CrossRef] [Google Scholar]
  • Mei XY, Gao SS, Liu Y, Hu J, Razlustkij V, Rudstam LG, Jeppesen E, Liu ZW, Zhang XF. 2022. Effects of elevated temperature on resources competition of nutrient and light between benthic and planktonic algae. Front Environ Sci 10: 908088. [CrossRef] [Google Scholar]
  • Miller WE, Greene JC, Shiroyama T. 1978. The Selenastrum capricornutum Printz algal assay bottle test: experimental design, application, and data interpretation protocol. Corvallis: Environmental Protection Agency, Office of Research and Development, Corvallis Environmental Research Laboratory. [Google Scholar]
  • Molisch H. 1938. Der einfluss einer pflanze auf die andere, allelopathie. Nature 141: 493–493. [CrossRef] [Google Scholar]
  • Ni LX, Rong SY, Gu GX, Hu LL, Wang PF, Li DY, Yue FF, Wang N, Wu HQ, Li SY. 2018. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases. Chemosphere 212: 654–661. [CrossRef] [PubMed] [Google Scholar]
  • Paerl HW, Barnard MA. 2020. Mitigating the global expansion of harmful cyanobacterial blooms: moving targets in a human- and climatically-altered world. Harmful Algae 96: 101845. [CrossRef] [PubMed] [Google Scholar]
  • Pal M, Yesankar PJ, Dwivedi A, Qureshi A. 2020. Biotic control of harmful algal blooms (HABs): a brief review. J Environ Manage 268: 110687. [CrossRef] [PubMed] [Google Scholar]
  • Pando AV, Pires MA, Vasconcelos V, Felpeto AB. 2022. Phormidium sp. allelochemicals induce the collapse of large populations of different genotypes of Microcystis aeruginosa. Hydrobiologia 849: 3213–3226. [CrossRef] [Google Scholar]
  • Park MH, Han MS, Ahn CY, Kim HS, Yoon BD, Oh HM. 2006. Growth inhibition of bloom-forming cyanobacterium Microcystis aeruginosa by rice straw extract. Lett Appl Microbiol 43: 307–312. [CrossRef] [PubMed] [Google Scholar]
  • Patil V, Huang L, Liang J, Sun L, Wang DZ, Gao YH, Chen CP. 2024. The allelopathic potential of red macroalga Pyropia haitanensis solvent extracts on controlling bloom-forming microalgae: insights into the inhibitory compounds. Ecotox Environ Safe 272: 116638. [Google Scholar]
  • Qian KM, Liu X, Duan M, Chen YW. 2016. Distribution and its influencing factors of bloom-forming cyanobacteria in Poyang Lake. Environ Sci 36: 261–267 (abstract in Chinese). [Google Scholar]
  • Rice E. 1984. Allelopathy, 2nd ed. London: Academic Press. [Google Scholar]
  • San Emeterio L, Damgaard C, Canals RM. 2007. Modelling the combined effect of chemical interference and resource competition on the individual growth of two herbaceous populations. Plant Soil 292: 95–103. [CrossRef] [Google Scholar]
  • Sanna S, Giovana OF, Edna G. 2004. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308: 85–101. [CrossRef] [Google Scholar]
  • Su W, Hagstrom JA, Jia YH, Lu YP, Kong FX. 2014. Effects of rice straw on the cell viability, photosynthesis, and growth of Microcystis aeruginosa. Chin J Oceanol Limnol 32: 120–129. [CrossRef] [Google Scholar]
  • Sun R, Sun PF, Zhang JH, Esquivel-Elizondo S, Wu YH. 2018. Microorganisms-based methods for harmful algal blooms control: a review. Bioresour Technol 248: 12–20. [CrossRef] [PubMed] [Google Scholar]
  • Tan BY, Hu PF, Niu XX, Zhang X, Liu JK, Frenken T, Hamilton PB, Haffner GD, Chaganti SR, Nwankwegu AS, Zhang L. 2022. Microbial community day-to-day dynamics during a spring algal bloom event in a tributary of Three Gorges Reservoir. Sci Total Environ 839: 156183. [CrossRef] [PubMed] [Google Scholar]
  • Tang P, Yu LJ, Peng ZX, Fan PY, Li TM, Ren KY. 2021. Research progresses on algae inhibition by allelopathy of aquatic plants. J Biol 38: 104–108. [Google Scholar]
  • Tazart Z, Caldeira AT, Douma M, Salvador C, Loudiki M. 2021. Inhibitory effect and mechanism of three macrophytes extract on Microcystis aeruginosa growth and physiology. Water Environ J 35: 580–592. [CrossRef] [Google Scholar]
  • Wang XL, Xu LG, Wan RR, Chen YW. 2016a. Seasonal variations of soil microbial biomass within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Catena 137: 483–493. [CrossRef] [Google Scholar]
  • Wang J, Liu Q, Feng J, Lv JP, Xie SL. 2016b. Photosynthesis inhibition of pyrogallol against the bloom-forming cyanobacterium Microcystis aeruginosa TY001. Pol J Environ Stud 25: 2601–2608. [CrossRef] [Google Scholar]
  • Wang TT, Liu HC. 2023. Aquatic plant allelochemicals inhibit the growth of microalgae and cyanobacteria in aquatic environments. Environ Sci Pollut Res 30: 105084–105098. [CrossRef] [Google Scholar]
  • Wang WY, Yang P, Xia J, Zhang SQ, Luo XG, Hu S, Li J, Chen NC, Zhan CS. 2023. Characterizing water body changes in Poyang Lake using multi-source remote sensing data. Environ Dev 48: 100909. [CrossRef] [Google Scholar]
  • Whittaker RH, Feeny PP. 1971. Allelochemics: chemical interactions between species. Science 171: 757–770. [CrossRef] [PubMed] [Google Scholar]
  • Wu ZS, Cai YJ, Liu X, Xu CP, Chen YW, Zhang L. 2013. Temporal and spatial variability of phytoplankton in Lake Poyang: the largest freshwater lake in China. J Great Lakes Res 39: 476–483. [Google Scholar]
  • Wu ZS, Lai XJ, Zhang L, Cai YJ, Chen YW. 2014a. Phytoplankton chlorophyll a in Lake Poyang and its tributaries during dry, mid-dry and wet seasons: a 4-year study. Knowl Manag Aquatic Ecosyst 412: 61–73. [Google Scholar]
  • Wu ZS, He H, Cai YJ, Zhang L, Chen YW. 2014b. Spatial distribution of chlorophyll a and its relationship with the environment during summer in Lake Poyang: a Yangtze-connected lake. Hydrobiologia 732: 61–70. [CrossRef] [Google Scholar]
  • Wu ZS, Ma TT, Xiong LL, Deng YQ, Li KY. 2023. How does phytoplankton respond to hygrophyte decomposition during the inundation period? Hydrobiologia 850: 51–63. [CrossRef] [Google Scholar]
  • Wu ZS, Lai XJ, Li KY. 2021. Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecol Indic 121: 107021. [CrossRef] [Google Scholar]
  • Wu ZS, Liu JT, Huang JC, Cai YJ, Chen YW, Li KY. 2019. Do the key factors determining phytoplankton growth change with water level in China's largest freshwater lake? Ecol Indic 107: 105675. [CrossRef] [Google Scholar]
  • Xiao X, Chen YX, Liang XQ, Lou LP, Tang XJ. 2010. Effects of Tibetan hulless barley on bloom-forming cyanobacterium (Microcystis aeruginosa) measured by different physiological and morphologic parameters. Chemosphere 81: 1118–1123. [CrossRef] [PubMed] [Google Scholar]
  • Xu JY, Zheng LL, Xu LG, Wang XL. 2020. Uptake and allocation of selected metals by dominant vegetation in Poyang Lake wetland: From rhizosphere to plant tissues. Catena 189: 104477–104477. [CrossRef] [Google Scholar]
  • Xu WJ, Wang JT, Tan LJ, Guo X, Xue QN. 2019. Variation in allelopathy of extracellular compounds produced by Cylindrotheca closterium against the harmful algal bloom dinoflagellate Prorocentrum donghaiense. Mar Environ Res 148: 19–25. [CrossRef] [PubMed] [Google Scholar]
  • Yan J, Xu PY, Zhang FR, Huang XY, Cao YM, Zhang SH. 2022. The effects of aqueous extract from watermelon (Citrullus lanatus) peel on the growth and physiological characteristics of Dolichospermum flos-aquae. Sci Rep 12 (1): 8086. [CrossRef] [PubMed] [Google Scholar]
  • Yuan RY, Li Y, Li JH, Ji SH, Wang S, Kong FL. 2020. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms. Sci Total Environ 712: 136332. [CrossRef] [PubMed] [Google Scholar]
  • Zebek E, Szymanska U. 2017. Abundance, biomass and community structure of pond phytoplankton related to the catchment characteristics. Knowl Manag Aquatic Ecosyst 418: 45. [CrossRef] [EDP Sciences] [Google Scholar]
  • Zhang L, Andersen KH, Dieckmann U, Brannstrom A. 2015. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities. J Theor Biol 380: 280–290. [CrossRef] [PubMed] [Google Scholar]
  • Zhang QH, Dong XH, Chen YW, Yang XD, Xu M, Davidson TA, Jeppesen E. 2018. Hydrological alterations as the major driver on environmental change in a floodplain Lake Poyang (China): Evidence from monitoring and sediment records. J Great Lakes Res 44 (3): 377–387. [CrossRef] [Google Scholar]
  • Zhu JY, Liu BY, Wang J, Gao YN, Wu ZB. 2010. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion. Aquat Toxicol 98 (2): 196–203. [CrossRef] [PubMed] [Google Scholar]
  • Zhu XQ, Dao GH, Tao Y, Zhan XM, Hu HY. 2021. A review on control of harmful algal blooms by plant-derived allelochemicals. J Hazard Mater 401: 123403. [CrossRef] [PubMed] [Google Scholar]
  • Zhu XQ, Dao GH, Tao Y, Zhan XM, Yong XY, Jiang HS, Yang L, Yu WW, Hu HY. 2020. Evaluation of growth inhibition of typical plant-derived allelochemicals on Microcystis aeruginosa. Environ Sci 40 (5): 2230–2237 (abstract in Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.