Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 425, 2024
Article Number 15
Number of page(s) 10
DOI https://doi.org/10.1051/kmae/2024013
Published online 04 October 2024
  • Atkinson CL, Julian JP, Vaughn CC. 2014. Species and function lost: Role of drought in structuring stream communities. Biol Conserv 176: 30–38. [CrossRef] [Google Scholar]
  • Arevalo E, Larrañaga A, Bardonnet A. 2020. Comparison of food availability and performances of first-feeding alevins through spring with the occurrence of a flood. Ecol Freshw Fish 29: 693–704. [CrossRef] [Google Scholar]
  • Arevalo E. 2014. Impact du barrage de Lurberria sur l'efficacité des frayères de salmonidés de la Nivelle. Université de Pau et des Pays de l'Adour (UPPA), FRA. [Google Scholar]
  • Armstrong JD, Kemp PS, Kennedy GJA, Ladle M, Milner NJ. 2003. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish Res 62: 143–170. [CrossRef] [Google Scholar]
  • Baxter CV, Kennedy TA, Miller SW, Muehlbauer JD, Smock LA. 2017. Macroinvertebrate drift, adult insect emergence and oviposition, in Methods in Stream Ecology Ecosystem Structure, edited by F.R. Hauer, G.A. Lamberti. Vol. 1. Elsevier, Academic Press, pp. 435–456. [Google Scholar]
  • Bo T, Fenoglio S, Malacarne G, Pessino M, Sgariboldi F. 2007. Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37: 186–192. [CrossRef] [Google Scholar]
  • Bogan MT, Boersma KS, Lytle DA. 2014. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw Biol 60: 2547–2558. [Google Scholar]
  • Boulton AJ, Peterson CG, Grimm NB, Fisher SG. 1992. Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology 73: 2192–2207. [CrossRef] [Google Scholar]
  • Boulton AJA, Findlay S, Marmonier P, Stanley EH, Valett HM. 1998. The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29: 59–81. [CrossRef] [Google Scholar]
  • Boulton AJ. 2003. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw Biol 48: 1173–1185. [Google Scholar]
  • Chadd RP, England JA, Constable D, Dunbar MJ, Extence CA, Leeming DJ, Murray-Bligh JA, Wood PJ. 2017. An index to track the ecological effects of drought development and recovery on riverine invertebrate communities. Ecol Indic 82: 344–356. [CrossRef] [Google Scholar]
  • Clews E, Durance I, Vaughan IP, Ormerod SJ. 2010. Juvenile salmonid populations in a temperate river system track synoptic trends in climate. Glob Chang Biol 16: 3271–3283. [CrossRef] [Google Scholar]
  • Datry T, Bonada N, Boulton AJ. 2017. General introduction, in: Intermittent Rivers and Ephemeral Streams: Ecology and Management, edited by Datry T, Bonada N, Boulton AJ. Elservier, 2017, pp. 1–20. [Google Scholar]
  • Datry T. 2017. Ecological Effects of Flow Intermittence in Gravel-Bed Rivers. In Gravel-Bed Rivers. . John Wiley and Sons, Ltd. pp. 261–297. [Google Scholar]
  • Datry T, Bonada N, Boulton A. 2017. Intermittent Rivers and Ephemeral Streams, Ecology and Management. London: Elsevier, Academic Press. [Google Scholar]
  • Dayon G, Boé J, Martin É, Gailhard J. 2018. Impacts of climate change on the hydrological cycle over France and associated uncertainties. Comptes Rendus − Geosci 350: 141–153. [CrossRef] [Google Scholar]
  • Descloux S, Datry T, Marmonier P. 2013. Benthic and hyporheic invertebrate assemblages along a gradient of increasing streambed colmation by fine sediment. Aquat Sci 75: 493–507. [CrossRef] [Google Scholar]
  • Dewson ZS, James ABW, Death RG. 2007. A review of the consequences of decreased flow for instream habitat and macroinvertebrates. J North Am Benthol Soc 26: 401–415. [CrossRef] [Google Scholar]
  • Di Sabatino A, Coscieme L, Cristiano G. 2023. No post-drought recovery of the macroinvertebrate community after five months upon rewetting of an irregularly intermittent Apennine River (Aterno River). Ecohydrol Hydrobiol 23: 141–151. [CrossRef] [Google Scholar]
  • Dole-Olivier MJ. 2011. The hyporheic refuge hypothesis reconsidered: A review of hydrological aspects. Mar Freshw Res 62: 1281–1302. [CrossRef] [Google Scholar]
  • Doretto A, Bona F, Falasco E, Morandini D, Piano E, Fenoglio S. 2019. Stay with the flow: How macroinvertebrate communities recover during the rewetting phase in Alpine streams affected by an exceptional drought. River Res Appl 36: 91–101. [Google Scholar]
  • Downes BJ, Lake PS, Glaister A, Angus Webb J. 1998. Scales and frequencies of disturbances: Rock size, bed packing and variation among upland streams. Freshw Biol 40: 625–639. [CrossRef] [Google Scholar]
  • Elliott JM. 2000. Pools as refugia for brown trout during two summer droughts: trout responses to thermal and oxygen stress. J Fish Biol 56: 938–948. [CrossRef] [Google Scholar]
  • Elliott JMA, Hurley MA, Elliott JMA. 1997. Variable effects of droughts on the density of a sea-trout Salmo trutta population over 30 years. J Appl Ecol 34: 1229–1238. [CrossRef] [Google Scholar]
  • Fenoglio S, Bo T, Cucco M, Malacarne G. 2007. Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). Ital J Zool 74: 191–201. [CrossRef] [Google Scholar]
  • Fulton TW. 1911. In: The sovereignty of the sea: An historical account of the claims of England to the dominion of the British seas, and of the evolution of the territorial waters W. Blackwood, Edinburgh, London. p. 799. [Google Scholar]
  • Garcia de Leaniz C, Fraser N, Mikheev V, Huntingford F. 1994. Individual recognition of juvenile salmonids using melanophore patterns. J Fish Biol 45: 417–422. [CrossRef] [Google Scholar]
  • Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, 651 p. [Google Scholar]
  • Gelman A. 2006. Prior distributions for variance parameters in hierarchical models (Comment on Article by Browne and Draper). Bayesian Anal 1: 515–534. [MathSciNet] [Google Scholar]
  • Georgian T, Wallace BJ. 1983. Seasonal production dynamics in a guild of periphyton-grazing insects in a Southern Appalachian stream. Ecology 64: 1236–1248. [CrossRef] [Google Scholar]
  • Grant JW, Kramer DL. 1990. Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Can J Fish Aquat Sci 47: 1724–1737. [CrossRef] [Google Scholar]
  • Hakala JP, Hartman KJ. 2004. Drought effect on stream morphology and brook trout (Salvenus fontinalis) populations in forested headwater streams. Hydrobiologia 515: 203–213. [CrossRef] [Google Scholar]
  • Harrison E. 2010. Fine sediment in rivers: scale of ecological outcomes. University of Canberra. [Google Scholar]
  • Harvey BC, White JL, Nakamoto RJ. 2005. Habitat-specific biomass, survival, and growth of rainbow trout (Oncorhynchus mykiss) during summer in a small coastal stream. Can J Fish Aquat Sci 62: 650–658. [CrossRef] [Google Scholar]
  • Huhta A, Muotka T, Tikkanen P. 2000. Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism. Freshwater biology 45: 33–42. [Google Scholar]
  • Hynes HBN. 1970. The Ecology of Running Waters. Liverpool: Liverpool University Press. [Google Scholar]
  • Johansson A. 1991. Caddis larvae cases (Trichoptera, Limnephilidae) as anti-predatory devices against brown trout and sculpin. Hydrobiologia 211: 185–194. [CrossRef] [Google Scholar]
  • Jones JI, Murphy JF, Collins AL, Sear DA, Naden PS, Armitage PD. 2012. The impact of fine sediment on macro-invertebrates. River Res Appl 28: 1055–1071. [CrossRef] [Google Scholar]
  • Kahler TH, Roni P, Quinn TP. 2011. Summer movement and growth of juvenile anadromous salmonids in small western Washington streams. Can J Fish Aquat Sci 58: 1947–1956. [Google Scholar]
  • Keeley ER, Grant JWA. 1997. Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 54: 1894–1902. [CrossRef] [Google Scholar]
  • Lake PS. 2003. Drought and aquatic ecosystems: an introduction. Freshw Biol 48: 1141–1146. [CrossRef] [Google Scholar]
  • Lennox RJ, Crook DA, Moyle PB, Struthers DP, Cooke SJ. 2019. Toward a better understanding of freshwater fish responses to an increasingly drought-stricken world. Rev Fish Biol Fish 29: 71–92. [CrossRef] [Google Scholar]
  • Magalhães MF, Beja P, Canas C, Collares-Pereira MJ. 2002. Functional heterogeneity of dry-season fish refugia across a Mediterranean catchment: The role of habitat and predation. Freshw Biol 47: 1919–1934. [CrossRef] [Google Scholar]
  • Magalhães MF, Beja P, Schlosser IJ, Collares-Pereira MJ. 2007. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw Biol 52: 1494–1510. [Google Scholar]
  • Maridet L, Wasson J-G, Philippe M. 1992. Vertical distribution of fauna in the bed sediment of three running water sites: influence of physical and trophic factors. Regul Rivers Res Manag 7: 45–55. [CrossRef] [Google Scholar]
  • Mathers KL, Hill MJ, Wood CD, Wood PJ. 2019. The role of fine sediment characteristics and body size on the vertical movement of a freshwater amphipod. Freshw Biol 64: 152–163. [CrossRef] [Google Scholar]
  • Mathers KL, Millett J, Robertson AL, Stubbington R, Wood PJ. 2014. Faunal response to benthic and hyporheic sedimentation varies with direction of vertical hydrological exchange. Freshw Biol 59: 2278–2289. [CrossRef] [Google Scholar]
  • Mathers KL, Rice SP, Wood PJ. 2017. Temporal effects of enhanced fine sediment loading on macroinvertebrate community structure and functional traits. Sci Total Environ 599–600: 513–522. [CrossRef] [PubMed] [Google Scholar]
  • Mathers KL, Wood PJ. 2016. Fine sediment deposition and interstitial flow effects on macroinvertebrate community composition within riffle heads and tails. Hydrobiologia 776: 147–160. [CrossRef] [Google Scholar]
  • Messager ML, Lehner B, Cockburn C, Lamouroux N, Pella H, Snelder T, Tockner K, Trautmann T, Watt C, Datry T. 2021. Global prevalence of non-perennial rivers and streams. Nature 594: 391–397. [CrossRef] [PubMed] [Google Scholar]
  • Milner AM, Picken JL, Klaar MJ, Robertson AL, Clitherow LR, Eagle L, Brown LE. 2018. River ecosystem resilience to extreme flood events. Int J Bus Innov Res 17: 8354–8363. [Google Scholar]
  • Milner VS, Jones JI, Maddock IP, Bunting GC. 2022. The hyporheic zone as an invertebrate refuge during a fine sediment disturbance event. Ecohydrology 15: 1–14. [Google Scholar]
  • Mureithi PW, Mbaka JG, M'Erimba CM, Mathooko JM, 2018. Effect of drift sampler exposure time and net mesh size on invertebrate drift density in the Njoro River, Kenya. Afr J Aquat Sci 43: 163–168. [CrossRef] [Google Scholar]
  • Muotka T, Huhta A, Tikkanen P. 1999. Diel vertical movements by lotic mayfly nymphs under variable predation risk. Ecological Entomology 24: 443–449. [CrossRef] [Google Scholar]
  • Naiman RJ, Latterell JJ, Pettit NE, Olden JD. 2008. Flow variability and the biophysical vitality of river systems. Comptes Rendus − Geosci 340: 629–643. [CrossRef] [Google Scholar]
  • Naman SM, Rosenfeld JS, Richardson JS. 2016. Causes and consequences of invertebrate drift in running waters: from individuals to populations and trophic fluxes. Can J Fish Aquat Sci 73: 1292–1305. [CrossRef] [Google Scholar]
  • Nislow KH, Sepulveda AJ, Folt CL. 2004. Mechanistic linkage of hydrologic regime to summer growth of age-0 Atlantic salmon. Trans Am Fish Soc 133: 79–88. [CrossRef] [Google Scholar]
  • Otto C, Svensson BS. 1980. The significance of case material selection for the survival of caddis larvae. J Anim Ecol 855–865. [CrossRef] [Google Scholar]
  • Palmer M, Lettenmaier DP, Poff NL, Postel SL, Richter B, Warner R. 2009. Climate change and river ecosystems: protection and adaptation options. Environ Manag 44: 1053–1068. [CrossRef] [PubMed] [Google Scholar]
  • Pařil P, Polášek M, Loskotová B, Straka M, Crabot J, Datry T. 2019. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshw Biol 64: 1971–1983. [CrossRef] [Google Scholar]
  • Pickett ST, White PS. 1985. The ecology of natural disturbance and patch dynamics. Elsevier. [Google Scholar]
  • Rashidabadi F, Rosenfeld JS, Abdoli A, Naman SM, Nicolas A. 2022. Seasonal changes in invertebrate drift: effects of declining summer flows on prey abundance for drift-feeding fishes. Hydrobiologia 849: 1855–1869. [CrossRef] [Google Scholar]
  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol Rev 94: 849–873. [CrossRef] [PubMed] [Google Scholar]
  • Relyea CD, Minshall GW, Danehy RJ, 2000. Stream insects as bioindicators of fine sediment. Proc Water Environ Federat 2000: 663–686. [CrossRef] [Google Scholar]
  • Resh VH, Brown AV, Covich AP, Gurtz ME, Li HW, Minshall GW, Reice SR, Sheldon AL, Wallace JB, Wissmar RC. 1988. The role of disturbance in stream ecology. J North Am Benthol Soc 7: 433–455. [CrossRef] [Google Scholar]
  • Rosenfeld JS, Boss S. 2001. Fitness consequences of habitat use for juvenile cutthroat trout: energetic costs and benefits in pools and riffles. Can J Fish Aquat Sci 58: 585–593. [CrossRef] [Google Scholar]
  • Sánchez-Hernández J, Servia MJ, Vieira-Lanero R, Cobo F. 2012. Ontogenetic dietary shifts in a predatory freshwater fish species: the brown trout as an example of a dynamic fish species. New Adv Contrib to Fish Biol 271–298. [Google Scholar]
  • Sarremejane R, Cañedo-Argüelles M, Prat N, Mykrä, H, Muotka T, Bonada N, 2017. Do metacommunities vary through time? Intermittent rivers as model systems. J Biogeogr 44: 2752–2763. [Google Scholar]
  • Schmid PE, Schmid-Araya JM. 2010. Scale-dependent relations between bacteria, organic matter and invertebrates in a headwater stream. Fundam Appl Limnol 176: 365–375. [CrossRef] [Google Scholar]
  • Shearer KA, Stark JD, Hayes JW, Young RG. 2003. Relationships between drifting and benthic invertebrates in three New Zealand rivers: implications for drift-feeding fish. New Zeal J Mar Freshw Res 37: 809–820. [CrossRef] [Google Scholar]
  • Skoulikidis NT, Sabater S, Datry T, Morais MM, Buffagni A, Dorflinger G, Zogaris S, Del Mar Sanchez-Montoya M, Bonada N, Kalogianni E, Rosado J, Vardakas L, De Girolamo AM, Tockner K. 2017. Non-perennial Mediterranean rivers in Europe: status, pressures, and challenges for research and management. Sci Total Environ 577: 1–18. [CrossRef] [PubMed] [Google Scholar]
  • Slack KV, Tilley LJ, Kennelly SS, 1991. Mesh-size effects on drift sample composition as determined with a triple net sampler. Hydrobiologia 209: 215–226. [CrossRef] [Google Scholar]
  • Strayer DL, May SE, Nielsen P, Wollheim W, Hausam S. 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Arch fur Hydrobiol 140: 131–144. [CrossRef] [Google Scholar]
  • Stubbington R. 2012. The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Mar Freshw Res 63: 293–311. [CrossRef] [Google Scholar]
  • Sweka JA, Hartman KJ. 2008. Contribution of terrestrial invertebrates to yearly brook trout prey consumption and growth. Trans Am Fish Soc 137: 224–235. [CrossRef] [Google Scholar]
  • Trenberth KE, Dai A, Van Der Schrier F G, Jones PD, Barichivich J, Briffa KR, Sheffield J. 2014. Global warming and changes in drought. Nat Clim Chang 4: 17–22. [CrossRef] [Google Scholar]
  • Vadher AN, Millett J, Wood PJ. 2018. Direct observations of the effect of fine sediment deposition on the vertical movement of Gammarus pulex (Amphipoda: Gammaridae) during substratum drying. Hydrobiologia 815: 73–82. [CrossRef] [Google Scholar]
  • Vadher AN, Stubbington R, Wood PJ. 2015. Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss. Hydrobiologia 753: 61–71. [CrossRef] [Google Scholar]
  • Vander Vorste F R, S Sarremejane R, Datry T. 2020. Intermittent rivers and ephemeral streams: a unique biome with important contributions to biodiversity and ecosystem services. Encyclopedia of the World's biomes, 419–429. [CrossRef] [Google Scholar]
  • Vignes JC, Heland M. 1995. Comportement alimentaire au cours du changement d'habitat lié à l'émergence chez le saumon atlantique Salmo salar L. et la truite commune Salmo trutta L., en conditions semi-naturelles. Bull Français la Pêche la Piscic 207–214. [CrossRef] [EDP Sciences] [Google Scholar]
  • Walsh CL, Kilsby CG. 2007. Implications of climate change on flow regime affecting Atlantic salmon. Hydrol Earth Syst Sci Discuss 11: 1127–1143. [CrossRef] [Google Scholar]
  • Williams DD, Hynes HBN. 1974. The occurrence of benthos deep in the substratum of a stream. Freshw Biol 4: 233–256. [CrossRef] [Google Scholar]
  • Winkowski JJ, Zimmerman MS. 2017. Summer habitat and movements of juvenile salmonids in a coastal river of Washington State. Ecol Freshw Fish 27: 255–269. [Google Scholar]
  • Wood P, Armitage PD. 1997. Biological effects of fine sediment in the lotic environment. Environ Manage 21: 203–217. [CrossRef] [PubMed] [Google Scholar]
  • Wood PJ, Boulton AJ, Little S, Stubbington R. 2010. Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundam Appl Limnol / Arch für Hydrobiol 176: 377–390. [CrossRef] [Google Scholar]
  • Zabel R, Scheuerell M, McClure M, Williams J. 2006. The interplay between climate variability and density dependence in the population viability of Chinook salmon. Conserv Biol 20: 190–200. [CrossRef] [PubMed] [Google Scholar]
  • Zweig LD, Rabeni CF, 2001. Biomonitoring for deposited sediment using benthic invertebrates: a test on 4 Missouri streams. J North Am Bentholog Soc 20: 643–657. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.