Knowl. Manag. Aquat. Ecosyst.
Number 425, 2024
Development of biological and environmental indicators and indices, testing and use
Article Number 1
Number of page(s) 12
Published online 23 January 2024
  • Arvola L. 1984. Diel variation in primary production and the vertical distribution of phytoplankton in a polyhumic lake. Arch Hydrobiol 101: 503–519. [Google Scholar]
  • Arvola L, Ojala A, Barbosa F, Heaney SI. 1991. Migration behavior of three cryptophytes in relation to environmental gradients: an experimental approach. Brit Phycol J 26: 361–373. [CrossRef] [Google Scholar]
  • Barbiero RP, Tuchman ML. 2004. The deep chlorophyll maximum in Lake Superior. J Great Lakes Res 30: 256–268. [CrossRef] [Google Scholar]
  • Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen U-P, Dau H. 2002. A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72: 39–53. [CrossRef] [PubMed] [Google Scholar]
  • Borowiak D, Borowiak M. 2016. Comparative studies of underwater light regimes in lakes of the East-Suwałki Lakeland. Limn Rev 16: 173–183. [Google Scholar]
  • Caballero M, Vázquez G. 2020. Mixing patterns and deep chlorophyll a maxima in a eutrophic tropical lake in western Mexico. Hydrobiologia 847: 4161–4176. [CrossRef] [Google Scholar]
  • Callieri C, Amicucci E, Bertoni R, Vörös L. 1996. Fluorometric characterization of two picocyanobacteria strains from lakes of different underwater light quality. Int Revue ges Hydrobiol 81: 13–23. [CrossRef] [Google Scholar]
  • Camacho A. 2006. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 25: 453–478. [CrossRef] [Google Scholar]
  • Camacho A, Vicente E, Miracle MR. 2001. Ecology of Cryptomonas at the chemocline of a karstic sulphate-rich lake. Mar Freshwater Res 52: 805–815. [CrossRef] [Google Scholar]
  • Camacho A, Miracle MR, Vicente E. 2003. Which factors determine the abundance and distribution of picocyanobacteria in inland waters? A comparison among different types of lakes and ponds. Arch Hydrobiol 157: 321–338. [CrossRef] [Google Scholar]
  • Carlson RE. 1977. A trophic state index for lakes. Limnol Oceanogr 22: 361–369. [Google Scholar]
  • Cornec M, Claustre H, Mignot A, Guidi L, Lacour L, Poteau A, D'Ortenzio F, Gentili B, Schmechtig C. 2020. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Global Biogeochem Cycles 35: e2020G B006759. [Google Scholar]
  • Cullen JJ. 2015. Subsurface chlorophyll maximum layers: Enduring enigma or mystery solved? Annu Rev Mar Sci 7: 207–239. [CrossRef] [PubMed] [Google Scholar]
  • Diehl S. 2002. Phytoplankton, light, and nutrients in a gradient of mixing depths: Theory. Ecology 83: 386–398. [CrossRef] [Google Scholar]
  • Ediger D, Yilmaz A. 1996. Characteristics of deep chlorophyll maxima in the Northeastern Mediterranean with respect to environmental conditions. J Mar Biol 9: 291–303. [Google Scholar]
  • Eloranta P. 1978. Light penetration in different types of lakes in Central Finland. Holarct Ecol 1: 362–366. [Google Scholar]
  • Fee EJ. 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates. Limnol Oceanogr 21: 767–783. [CrossRef] [Google Scholar]
  • Gálvez JA, Niell FX, Lucena J. 1988. Description and mechanism of formation of a deep chlorophyll maximum due to Ceratium hirundinella (O. F. Müller). Arch Hydrobiol 112: 143–155. [CrossRef] [Google Scholar]
  • Garrido M, Cecchi P, Malet N, Bec C, Torre F, Pasqualini V. 2019. Evaluation of FluoroProbe® performance for the phytoplankton-based assessment of the ecological status of Mediterranean coastal lagoons. Environ Monit Assess 191: 204. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Gervais F. 1991. Which factors control seasonal and spatial distribution of phytoplankton species in Schlachtensee (Berlin, FRG.)? Arch Hydrobiol 121: 43–65. [CrossRef] [Google Scholar]
  • Gibson CE, Wang G, Foy RH. 2000. Silica and diatom growth in Lough Neagh: The importance of internal recycling. Freshw Biol 45: 285–293. [CrossRef] [Google Scholar]
  • Gliwicz ZM, Kowalczewski A. 1981. Epilimnetic and hypolimnetic symptoms of eutrophication in Great Mazurian Lakes, Poland. Freshw Biol 11: 425–435. [CrossRef] [Google Scholar]
  • Gollnisch RT, Alling T, Stockenreiter M, Ahrén D, Grabowska M, Rengefors K. 2021. Calcium and pH interaction limits bloom formation and expansion of a nuisance microalga. Limnol Oceanogr 66: 3523–3534. [CrossRef] [Google Scholar]
  • Górniak A. 2017. A new version of the Hydrochemical Dystrophy Index to evaluate dystrophy in lakes. Ecol Indic 78: 566–573. [CrossRef] [Google Scholar]
  • Gregor J, Marsálek B. 2004. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods. Water Res 38: 517–522. [CrossRef] [PubMed] [Google Scholar]
  • Grigorszky I, Padisák J, Borics G, Schitchen C, Borbély G. 2003. Deep chlorophyll maximum by Ceratium hirundinella (O. F. Müller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 506: 209–212. [CrossRef] [Google Scholar]
  • Huisman J, Weissing FJ. 1995. Competition for nutrients and light in a mixed water column— a theoretical analysis. Am Nat 146 : 536–564. [CrossRef] [Google Scholar]
  • Hutorowicz A, Pasztaleniec A. 2021. Uncertainty in phytoplankton-based lake ecological status classification: implications of sampling frequency and metric simplification. Ecol Indic 127: 107754. [CrossRef] [Google Scholar]
  • Johansson KSL, Vrede T, Lebret K, Johnson RK. 2013. Zooplankton feeding on the nuisance flagellate Gonyostomum semen. PLoS ONE 8: e 62557. [Google Scholar]
  • Jones RI. 1988. Vertical distribution and diel migration of flagellated phytoplankton in a small humic lake. Hydrobiologia 161: 75–87. [CrossRef] [Google Scholar]
  • Karpowicz M, Ejsmont-Karabin J. 2017. Effect of metalimnetic gradient on phytoplankton and zooplankton (Rotifera, Crustacea) communities in different trophic conditions. Environ Monit Assess 189: 367. [CrossRef] [PubMed] [Google Scholar]
  • Karpowicz M, Ejsmont-Karabin J. 2018. Influence of environmental factors on vertical distribution of zooplankton communities in humic lakes. Ann Limnol − Int J Lim 54: 17. [CrossRef] [EDP Sciences] [Google Scholar]
  • Karpowicz M, Zieliński P, Grabowska M, Ejsmont-Karabin J, Kozłowska J, Feniova I. 2020. Effect of eutrophication and humification on nutrient cycles and transfer efficiency of matter in the freshwater food web. Hydrobiologia 847: 2521–2540. [CrossRef] [Google Scholar]
  • Karpowicz M, Feniova I, Gladyshev MI, Ejsmont-Karabin J, Górniak A, Sushchik NN, Anishchenko OV, Dzialowski AR. 2021. Transfer efficiency of carbon, nutrients, and polyunsaturated fatty acids in planktonic food webs under different environmental conditions. Ecol Evol 11: 8201–8214. [CrossRef] [PubMed] [Google Scholar]
  • Karpowicz M, Grabowska M, Ejsmont-Karabin J, Ochocka A. 2023. Humic lakes with inefficient and efficient transfer of matter in planktonic food webs. Sci Rep 13: 7913. [CrossRef] [PubMed] [Google Scholar]
  • Klausmeier ChA, Litchman E. 2001. Algal games: The vertical distribution of phytoplankton in poorly mixed water columns. Limnol Oceanogr 46: 1998–2007. [CrossRef] [Google Scholar]
  • Kring SA, Figary SE, Boyer GL, Watson SB, Twiss MR. 2014. Rapid in situ measures of phytoplankton communities using the bbe FluoroProbe: evaluation of spectral calibration, instrument intercompatibility, and performance range. Can J Fish Aquat Sci 71: 1087–1095. [CrossRef] [Google Scholar]
  • Lenard T, Poniewozik M. 2022. Planktothrix agardhii versus Planktothrix rubescens: separation of ecological niches and consequences of cyanobacterial dominance in freshwater. Int J Environ Res Public Health 19: 14897. [CrossRef] [PubMed] [Google Scholar]
  • Litchman E. 2000. Growth rates of phytoplankton under fluctuating light. Freshw Biol 44: 223–235. [CrossRef] [Google Scholar]
  • Neal C, Neal M, Wickham H. 2000. Phosphate measurement in natural waters: two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. Sci Total Environ 251: 513–542. [Google Scholar]
  • Nõges P, Poikane S, Kõiv T, Nõges T. 2010. Effect of chlorophyll sampling design on water quality assessment in thermally stratified lakes. Hydrobiologia 649: 157–170. [CrossRef] [Google Scholar]
  • Pasztaleniec A, Hutorowicz A, Napiórkowska-Krzebietke A. 2020. Rapid monitoring of cyanobacteria in lakes − a case study in the Wel River catchment, Poland. Limnol Rev 20: 41–49. [CrossRef] [Google Scholar]
  • Pasztaleniec A, Ochocka A. 2021. A comparative study of phytoplankton epi- and metalimnetic communities under different light and thermal regimes. Ecohydrol Hydrobiol 21: 760–774. [CrossRef] [Google Scholar]
  • Pęczuła W, Mencfel R, Kowalczyk-Pecka D. 2013. Among-lake variation in vertical distribution of invasive, bloom-forming algal species Gonyostomum semen (Raphidophyceae) in stratified humic lakes of eastern Poland. Int Rev Hydrobiol 99: 317–325. [Google Scholar]
  • Pęczuła W, Grabowska M, Zieliński P, Karpowicz M, Danilczyk M. 2018. Vertical distribution of expansive, bloom-forming algae Gonyostomum semen vs. plankton community and water chemistry in four small humic lakes. Knowl Manag Aquat Ecosyst 419: 28. [Google Scholar]
  • Poikane S. 2009. Water Framework Directive intercalibration technical report. Part 2: Lakes. EUR 28838 EN/2, Office for Official Publications of the European Communities, Luxembourg. [Google Scholar]
  • Ptacnik R, Diehl S, Berger S. 2003. Performance of sinking and nonsinking phytoplankton taxa in a gradient of mixing depths. Limnol Oceanogr 48: 1903–1912. [CrossRef] [Google Scholar]
  • Reynolds CS. 1992. Dynamics, selection and composition of phytoplankton in relation to vertical structure in lakes. Arch Hydrobiol Beih Ergebn Limnol 35: 13–31. [Google Scholar]
  • Rohrlack T. 2023. Can osmotrophy in Gonyostomum semen explain why lake browning drives an expansion of the alga in parts of Europe? Limnologica 101: 126097. [CrossRef] [Google Scholar]
  • Shatwell T, Kohler J, Nicklisch A. 2013. Temperature and photoperiod interactions with silicon-limited growth and competition of two diatoms. J Plankton Res 35: 957–971. [CrossRef] [Google Scholar]
  • Smolander U, Arvola L. 1988. Seasonal variation in the diel vertical distribution of the migratory alga Cryptomonas marssonii (Cryptophyceae) in a small, highly humic lake. In Jones RI, Ilmavirta V. eds. Flagellates in Freshwater Ecosystems. Developments in Hydrobiology Vol. 45, Dordrecht: Springer. https://doi. org/10. 1007/978-94-009-3097-1_8 [Google Scholar]
  • Stockner J, Callieri C, Cronberg G. 2000. Picoplankton and other non-bloom-forming cyanobacteria in lakes. In Whitton BA, Potts M. eds. The Ecology of Cyanobacteria. Dordrecht: Springer. https://doi. org/10. 1007/0-306-46855-7_7 [Google Scholar]
  • Scofield AE, Watkins JM, Osantowski E, Rudstam LG. 2020. Deep chlorophyll maxima across a trophic state gradient: A case study in the Laurentian Great Lakes. Limnol Oceanogr 65: 2460–2484. [CrossRef] [PubMed] [Google Scholar]
  • Solis M, Wojciechowska W, Lenard T. 2013. Vertical distribution of phytoplankton in two mesotrophic lakes. Annales UMSC Sec. C, Vol. LXVIII, 2. 0035-7. [Google Scholar]
  • Vila X, Dokulil M, García-Gil LJ, Abellà CA, Borrego CM, Bañeras L. 1996. Composition and distribution of phototrophic bacterioplankton in the deep communities of several central European lakes: the role of light quality. Arch Hydrobiol Beih Ergebn Limnol 48: 183–196. [Google Scholar]
  • Vincent WF, Goldman CR. 1980. Evidence for algal heterotrophy in Lake Tahoe, California-Nevada. Limnol Oceanogr 25: 89–99. [CrossRef] [Google Scholar]
  • Wang M, Xu X, Wu Z, Zhang X, Sun P, Wen Y, Wang Z, Lu X, Zhang W, Wang X, Tong Y. 2019. Seasonal pattern of nutrient limitation in a eutrophic lake and quantitative analysis of the impacts from internal nutrient cycling. Environ Sci Technol 53: 13675–13686. [CrossRef] [PubMed] [Google Scholar]
  • Wetzel RG. 2001. Limnology. San Diego, CA: Academic Press, pp.1006. [Google Scholar]
  • Winder M, Reuter JE, Schladow SG. 2009. Lake warming favours small-sized planktonic diatom species. Proc R Soc B: Biol Sci 276: 427–435. [CrossRef] [PubMed] [Google Scholar]
  • Wojciechowska W, Poniewozik M, Pasztaleniec A. 2004. Vertical distribution of dominant cyanobacteria species in three lakes − Evidence of tolerance to different turbulence and oxygen conditions. Pol J Ecol 52: 347–351. [Google Scholar]
  • Wolfram G, Dokulil MT. 2009. Leitfaden zur Erhebung der Biologischen Qualitätselemente, Seen. Teil B2-01d −Phytoplankton. Handbuch des BMLFUW & des BAW, Wien: pp. 48 . [Google Scholar]
  • Wu Z, Liu Y, Liang Z, Wu S, Guo H. 2017. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference. Water Res 116: 231–240. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.