Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Freshwater ecosystems management strategies
Article Number 24
Number of page(s) 10
Published online 17 October 2023
  • Badiou PHJ, Goldsborough LG. 2015. Ecological impacts of an exotic benthivorous fish the common carp (Cyprinus carpio L.), on water quality, sedimentation, and submerged macrophyte biomass in wetland mesocosms. Hydrobiologia 755: 107–121. [CrossRef] [Google Scholar]
  • Benndorf J, Wissel B, Sell AF, Hornig U, Ritter P, Boïng W. 2000. Food web manipulation by extreme enhancement of piscivory: an invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica 30: 235–245. [CrossRef] [Google Scholar]
  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24: 127–135. [CrossRef] [PubMed] [Google Scholar]
  • Bretz F, Hothorn T, Westfall P. 2002. On multiple comparisons in R. R-news 3: 314–317. [Google Scholar]
  • Breukelaar AW, Lammens EHRR, Breteler JPG, Tátrai I. 1994. Effects of benthivorous bream (Abramis brama) and carp (Cyprinus carpio) on sediment resuspension and concentration of nutrients and chlorophyll a. Freshw Biol 32: 113–121. [CrossRef] [Google Scholar]
  • Brooks ME, Kristensen K, Van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9: 378–400. [CrossRef] [Google Scholar]
  • Cabrita MT, Silva A, Oliveira PB, Angélico MM, Nogueira M. 2015. Assessing eutrophication in the Portuguese continental Exclusive Economic Zone within the European Marine Strategy Framework Directive. Ecol Indic 58: 286–299. [CrossRef] [Google Scholar]
  • Carpenter SR, Kitchell JF, Hodgson JR. 1985. Cascading trophic interactions and lake productivity. BioScience 35: 634–639. [CrossRef] [Google Scholar]
  • Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE. 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecol Monogr 71: 163–186. [CrossRef] [Google Scholar]
  • Carpenter SR. 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci 102: 10002–10005. [CrossRef] [PubMed] [Google Scholar]
  • Chen KQ, Li QS, Han YQ, Li W, Zhang Y, Li KY, He H. 2021. Effects of Carassius auratus on water turbidity, nutrient levels and plankton biomass in shallow lakes: a mesocosm experiment. J Lake Sci 33: 397–404 (in Chinese with English abstract). [CrossRef] [Google Scholar]
  • Cheng LJ, Gao XY, Wang GW, Ding Z, Xue B, Zhang C, Liu JL, Jiang QF. 2023. Intensified sensitivity and adaptability of zooplankton Bosminidae in subtropical shallow freshwater lakes with increasing trophic level. Front Ecol Evol 11: 1121632. [CrossRef] [Google Scholar]
  • Dantas DDF, Rubim PL, de Oliveira FA, da Costa MRA, de Moura CGB, Teixeira LH, Attayde JL. 2018. Effects of benthivorous and planktivorous fish on phosphorus cycling, phytoplankton biomass and water transparency of a tropical shallow lake. Hydrobiologia 829: 31–41. [Google Scholar]
  • Ding WD, Zhang XH, Zhao XM, Jing W, Cao ZM, Li J, Huang Y, You XX, Wang M, Shi Q. 2021. A chromosome-level genome assembly of the mandarin fish (Siniperca chuatsi). Front Genet 12: 671650. [CrossRef] [PubMed] [Google Scholar]
  • Dou YQ, He S, Liang XF, Cai WJ, Wang J, Shi LJ, Li J. 2018. Memory function in feeding habit transformation of mandarin fish (Siniperca chuatsi). Int J Mol Sci 19: 1254. [CrossRef] [PubMed] [Google Scholar]
  • Drenner RW, Hambright KD. 1999. Biomanipulation of fish assemblages as a lake restoration technique. Arch Hydrobiol 146: 129–165. [CrossRef] [Google Scholar]
  • Ferreira JG, Andersen JH, Borja A, Bricker SB, Camp J, Cardoso da Silva M, Garcés E, Heiskanen AS, Humborg C, Ignatiades L, Lancelot C, Menesguen A, Tett P, Hoepffner N, Claussen U. 2011. Overview of eutrophication indicators to assess environmental status within the european marine strategy framework directive. Estuar Coast Shelf Sci 93: 117–131. [CrossRef] [Google Scholar]
  • Gao J, Zhong P, Ning JJ, Liu ZW, Jeppesen E. 2018. Herbivory of omnivorous fish shapes the food web structure of a Chinese tropical eutrophic lake: evidence from stable isotope and fish gut content analyses. Water 9: 69. [Google Scholar]
  • Gu J, He H, Jin H, Yu JL, Jeppesen E, Nairn RW, Li KY. 2018. Synergistic negative effects of small-sized benthivorous fish and nitrogen loading on the growth of submerged macrophytes-relevance for shallow lake restoration. Sci Total Environ 610: 1572–1580. [CrossRef] [PubMed] [Google Scholar]
  • Gu J, Li KY, Jeppesen E, Han YQ, Jin H, He H, Ning XY. 2020. Using freshwater bivalves (Corbicula Fluminea) to alleviate harmful effects of small-sized crucian carp (Carassius Carassius) on growth of submerged macrophytes during lake restoration by biomanipulation. Water 12: 3161. [CrossRef] [Google Scholar]
  • Guo C, Li W, Li SQ, Mai Z, Zhang TL, Liu JS, Hansen AG, Li L, Cai XW, Hicks BJ. 2022. Manipulation of fish community structure effectively restores submerged aquatic vegetation in a shallow subtropical lake. Environ Pollut 292: 118459. [CrossRef] [PubMed] [Google Scholar]
  • Han YQ, Zhang, Y, Li QS, Lurling M, Li W, He H, Gu J, Li KY. 2022. Submerged macrophytes benefit from lanthanum modified bentonite treatment under juvenile omni-benthivorous fish disturbance: implications for shallow lake restoration. Freshw Biol 67: 672–683. [CrossRef] [Google Scholar]
  • He H, Hu E, Yu JL, Luo XG, Li KY, Jeppesen E, Liu ZW. 2017. Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study. Environ Sci Pollut R 24: 5012–5018. [CrossRef] [PubMed] [Google Scholar]
  • He H, Qian T, Shen RJ, Yu JL, Li KY, Liu ZW, Jeppesen E. 2022. Piscivore stocking significantly suppresses small fish but does not facilitate a clear-water state in subtropical shallow mesocosms: a biomanipulation experiment. Sci Total Environ 842: 156967. [CrossRef] [PubMed] [Google Scholar]
  • Horppila J, Peltonen H, Malinen T, Luokkanen E, Kairesalo T. 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restor Ecol 6: 20–28. [CrossRef] [Google Scholar]
  • Hothorn T, Bretz F, Westfall P. 2008. Simultaneous inference in general parametric models. Biom J 50: 346–363. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9: 18–26. [CrossRef] [Google Scholar]
  • Hu CK, Yi MC. 1960. The habits, catching and breeding of snakehead. Chinese J Zool 7: 321–323 (in Chinese). [Google Scholar]
  • Jeppesen E, Meerhoff M, Holmgren K, Gonzalez-Bergonzoni I, Teixeira-de Mello F, Declerck SAJ, De Meester L,Søndergaard M, Lauridsen TL, Bjerring R, Conde-Porcuna JM, Mazzeo N,Iglesias C, Reizenstein M, Malmquist HJ, Liu ZW, Balayla D, Lazzaro X. 2010. Impacts of climate warming on lake fish community structure and potential ecosystem effects. Hydrobiologia 646: 73–90. [CrossRef] [Google Scholar]
  • Jeppesen E, Mehner T, Winfield IJ, Kangur K, Sarvala J, Gerdeaux D, Rask M, Malmquist HJ, Holmgren K, Volta P, Romo S, Eckmann R, Sandstrom A, Blanco S, Kangur A, Stabo HR, Tarvainen M, Ventela AM, Søndergaard M, Lauridsen TL, Meerhoff M. 2012. Impacts of climate warming on the long-term dynamics of key fish species in 24 European lakes. Hydrobiologia 694: 1–39. [CrossRef] [Google Scholar]
  • Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. 2010. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ Manage 45: 662–668. [CrossRef] [PubMed] [Google Scholar]
  • Li L, Tang SL, He S, Liang XF. 2023. Transcriptome analysis provides an overview of genes involved in the peculiar food preference at first-feeding stage in mandarin fish (Siniperca chuatsi). Fishes 8: 17. [Google Scholar]
  • Li W, Hicks BJ, Lin M, Guo C, Zhang T, Liu J, Beauchamp DA. 2018. Impacts of hatchery-reared mandarin fish Siniperca chuatsi stocking on wild fish community and water quality in a shallow Yangtze lake. Sci Rep 8: 11481. [CrossRef] [PubMed] [Google Scholar]
  • Liang XF. 1995. Visual characteristics of mandarin fish (Siniperca chuatsi) in relation to its feeding habit Ⅲ. Visual response to prey motion and shape. Acta Hydrobiologica Sinica 19: 70–75 ( in Chinese with English abstract). [Google Scholar]
  • Liang XF, Oku H, Ogata HY, Liu J, He X. 2001. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding. Aquac Res 32: 76–82. [CrossRef] [Google Scholar]
  • Liu JS, Cui YB, Liu JK. 2000. Resting metabolism and heat increment of feeding in mandarin fish (Siniperca chuatsi) and Chinese snakehead (Channa argus). Comp Biochem Physiol A Mol Integr Physiol 127: 131–138. [CrossRef] [PubMed] [Google Scholar]
  • Liu LW, Liang XF, Fang JG. 2015. The optimal stocking density for hybrid of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish fed minced prey fish. Aquac Res 48: 1342–1345. [Google Scholar]
  • Liu ZW, Zhang XF, Chen FZ, Du YX, Guan BH, Yu JL, He H, Zhang YD. 2020. The responses of the benthic-pelagic coupling to eutrophication and regime shifts in shallow lakes: implication for lake restoration. J Lake Sci 32: 1–10 (in Chinese with English abstract). [CrossRef] [Google Scholar]
  • Lorenz AW, Stoll S, Sundermann A, Haase P. 2013. Do adult and YOY fish benefit from river restoration measures? Ecol Eng 61: 174–181. [CrossRef] [Google Scholar]
  • Love JW, Newhard JJ. 2021. Using published information to predict consumption by northern snakehead in Maryland. T Am Fish Soc 150: 425–434. [CrossRef] [Google Scholar]
  • Lyche A, Faafeng BA, Brabrand A. 1990. Predictability and possible mechanisms of plankton response to reduction of piscivorous fish. Hydrobiologia 200: 251–261. [CrossRef] [Google Scholar]
  • MEEPRC (Ministry of Ecology and Environment, PRC). 2002. Methods for the examination of water and wastewater. Beijing: China Environmental Science Press, 836 p. ( in Chinese). [Google Scholar]
  • Meysman FJR, Galaktionov OS, Gribsholt B, Middelburg J, 2006. Bioirrigation in permeable sediments: advective pore-water transport induced by burrow ventilation. Limnol Oceanogr 51: 142–156. [CrossRef] [Google Scholar]
  • Miu LX. 1957. The habits and catching methods of snakehead. Biology of Bulletin 11: 35–37 (in Chinese). [Google Scholar]
  • Pandian TJ, Vivekanandan E. 1976. Effects of feeding and starvation on growth and swimming activity in an obligatory air-breathing fish. Hydrobiologia 49: 33–39. [CrossRef] [Google Scholar]
  • Parkos JJ, Santucci VJ, Wahl DH. 2003. Effects of adult common carp (Cyprinus carpio) on multiple trophic levels in shallow mesocosms. Can J Fish Aquat Sci 60: 182–192. [Google Scholar]
  • Pledger A, Rice S, Millett J. 2017. Foraging fish as zoogeomorphic agents: an assessment of fish impacts at patch, barform, and reach scales. J Geophys Res-earth 122: 2105–2123. [CrossRef] [Google Scholar]
  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  • Roozen FCJM, Lurling M, Vlek H, Kraan EAJVP, Ibelings BW, Scheffer M. 2007. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshw Biol 52: 977–987. [CrossRef] [Google Scholar]
  • Scheffer M, Portielje R, Zambrano L. 2003. Fish facilitate wave resuspension of sediment. Limnol Oceanogr 48: 1920–1926. [CrossRef] [Google Scholar]
  • Schrader KK, Tucker CS, Brown TW, Torrans EL, Whitis GN. 2016. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds. N Am J Aquacult 78: 384–395. [CrossRef] [Google Scholar]
  • SEPA. 2002. Analytical methods for water and wastewater monitor, 4th ed. Beijing: Chinese Environmental Science Press, ( in Chinese). [Google Scholar]
  • Sfakiotakis M, Lane DM, Davies JBC. 1999. Review of fish swimming modes for aquatic locomotion. IEEE J Oceanic Eng 24: 237–252. [CrossRef] [Google Scholar]
  • Shapiro J, Lamarra V, Lynch M. 1975. Biomanipulation: an ecosystem approach to lake restoration. In Brezonik PL, Fox JL, eds. Proceedings of a Symposium on Water Quality Management Through Biological Control, Gainesville, Florida: University of Florida Gainesville pp. 85–96. [Google Scholar]
  • Shormann DE, Cotner JB. 1997. The effects of benthivorous smallmouth buffalo (Ictiobus bubalus) on water quality and nutrient cycling in a shallow floodplain lake. Lake Reserv Manage 13: 270–278. [CrossRef] [Google Scholar]
  • Skov C, Perrow MR, Berg S, Skovgaard H. 2002. Changes in the fish community and water quality during seven years of stocking piscivorous fish in a shallow lake. Freshw Biol 47: 2388–2400. [CrossRef] [Google Scholar]
  • Søndergaard M, Jeppesen E, Berg S. 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 2. Effects on lower trophic levels in Lake Lyng, Denmark. Hydrobiologia 342: 319–325. [CrossRef] [Google Scholar]
  • Teixeira-de Mello F, Meerhoff M, Pekcan-Hekim Z, Jeppesen E. 2009. Substantial differences in littoral fish community structure and dynamics in subtropical and temperate shallow lakes. Freshw Biol 54: 1202–1215. [CrossRef] [Google Scholar]
  • Vanni MJ. 2002. Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33: 341–370. [CrossRef] [Google Scholar]
  • Volta P, Jeppesen E, Leoni B, Campi B, Sala P, Garibaldi L, Lauridsen T, Winfield IJ. 2013. Recent invasion by a non-native cyprinid (common bream Abramis brama) is followed by major changes in the ecological quality of a shallow lake in southern Europe. Biol Invasions 15: 2065–2079. [CrossRef] [Google Scholar]
  • Weber MJ, Brown ML. 2009. Effects of common carp on aquatic ecosystems 80 years after Carp as a dominant: ecological insights for fisheries management. Rev Fish Sci Aquac 17: 524–537. [CrossRef] [Google Scholar]
  • Xu J, Zhang H, Cai Y, García Molinos J, Zhang M. 2016. Optimal response to habitat linkage of local fish diversity and mean trophic level. Limnol Oceanogr 61: 1438–1448. [CrossRef] [Google Scholar]
  • Yi TL, Sun J, Liang XF, He S, Li L, Wen ZY, Shen D. 2013. Effects of polymorphisms in pepsinogen (PEP), amylase (AMY) and trypsin (TRY) genes on food habit domestication traits in mandarin fish. Int J Mol Sci 14: 21504–21512. [CrossRef] [PubMed] [Google Scholar]
  • Yu JL, Liu ZW, He H, Zhen W, Guan BH, Chen FZ, Li KY, Zhong P, de Mello FT, Jeppesen E. 2016. Submerged macrophytes facilitate dominance of omnivorous fish in a subtropical shallow lake: implications for lake restoration. Hydrobiologia 775: 97–107. [CrossRef] [Google Scholar]
  • Yu JL, Zhen W, Kong L, He H, Zhang YD, Yang XD, Chen FZ, Zhang M, Liu ZW, Jeppesen E. 2021. Changes in pelagic fish community composition, abundance, and biomass along a productivity gradient in subtropical lakes. Water 13: 858. [CrossRef] [Google Scholar]
  • Zambrano L, Scheffer M, Martinez-Ramos M. 2001. Catastrophic response of lakes to benthivorous fish introduction. Oikos 94: 344–350. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.