Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Anthropogenic impact on freshwater habitats, communities and ecosystem functioning
|
|
---|---|---|
Article Number | 19 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/kmae/2023014 | |
Published online | 20 July 2023 |
- Anderson TM, Anderson NH. 1995. The insect fauna of spring habitats in semiaridrangelands in central Oregon. J Kansas Entomol Soc 68: 65–76. [Google Scholar]
- Allan JD. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Ann Rev Ecol Sys 35: 257–284. [CrossRef] [Google Scholar]
- Allan JD, Erickson DL, Fay J. 1997. The influence of catchment land use on stream integrity across multiple scales. Freshwat Biol 37: 149–161. [CrossRef] [Google Scholar]
- Bonancina L, Fasano F, Mezzanotte V, Fornaroli R. 2022. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biol Rev doi.org/10.1111/brv.12903. [Google Scholar]
- Bonar S, Hubert W, Willis D (editors). 2009. Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda. [Google Scholar]
- Breiman L. 2001. Random forest. Machine Learn 45: 5–32. [CrossRef] [Google Scholar]
- Brito JG, Roque FO, Martins RT, Hamada N, Nessimian JL, Oliveira VC, Hughes RM, de Paula FR, Ferraz S. 2020. Small forest losses degrade stream macroinvertebrate assemblages in the eastern Brazilian Amazon. Biol Conserv 241: 108263. [CrossRef] [Google Scholar]
- Burnham KP, Anderson DR. 1998. Model selection and inference: a practical information-theoretic approach. New York: Springer. [CrossRef] [Google Scholar]
- Cao Y, Wang L. 2023. How to statistically disentangle the effects of environmental factors and human disturbances: a review. Water 15: 734. [CrossRef] [Google Scholar]
- Cao Y, Larsen DP, Hughes RM, Angermeier PL, Patton TM. 2002. Sampling effort affects multivariate comparisons of stream communities. J N Amer Benthol Soc 21: 701–714. [CrossRef] [Google Scholar]
- Casarim R, Caldeira YM, Pompeu PS. 2020. Representativeness of national parks in protecting freshwater biodiversity: a case of Brazilian savanna. Ecol Freshwat Fish 29: 705–721. [CrossRef] [Google Scholar]
- Chen K, Hughes RM, Xu S, Zhang J, Cai D, Wang B. 2014. Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples. Ecol Indicat 36: 142–151. [CrossRef] [Google Scholar]
- Daly C, Halbleib M, Smith JI, Gibson WP, Doggett MK, Taylor GH. 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Internat J Climat 28: 2031–2064. [CrossRef] [Google Scholar]
- Danielson JJ, Gesch DB. 2011. Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011-1073. https://www.usgs.gov/core-science-systems/eros/coastal-changes-and-impacts/gmted2010 [Google Scholar]
- Davies SP, Jackson SK. 2006. The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecol Appl 16: 1251–1266. [CrossRef] [PubMed] [Google Scholar]
- Davies P, Harris J, Hillman T, Walker K. 2008. A report on the ecological health of rivers in the Murray-Darling basin, 2004–2007. Murray-Darling Ministerial Council, Canberra. [Google Scholar]
- Dieterich M. 1992. Insect community composition and physico-chemical processes in summer-dry headwater streams of western Oregon. Ph. D. Thesis. Oregon State University, Corvallis.xx [Google Scholar]
- Dieterich M, Anderson NH. 2000. The invertebrate fauna of summer-dry streams in western Oregon. Archiv Hydrobiol 142: 273–295. [CrossRef] [Google Scholar]
- Ehlers J, Gibbard PL, Hughes PD. 2011. Quaternary glaciations: extent and chronology. https://crc806db.uni-koeln.de/layer/show/6 [Google Scholar]
- Erös T. 2007. Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwat Biol 52: 1400–1415. [CrossRef] [Google Scholar]
- ESRI. 2006. TeleAtlas 2006. ArcGIS 9.2 file geodatabase. 2006; https://www.roadsbridges.com/tele-atlas-north-america-inc [Google Scholar]
- Falcone JA. 2016. U.S. block-level population density rasters for 1990, 2000, and 2010. U.S. Geological Survey data release. doi.org/10.5066/F74J0C6M. [Google Scholar]
- Fausch KD, Karr JR, Yant PR. 1984. Regional application of an index of biotic integrity based on stream fish communities. Trans Amer Fish Soc 113: 39–55. [CrossRef] [Google Scholar]
- Fausch KD, Torgersen CE, Baxter CV, Li HW. 2002. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52: 483–498. [CrossRef] [Google Scholar]
- Feio MJ, Hughes RM, Serra SRQ, Nichols SJ, Callisto M, Macedo DR, Harding J, Yates AG, Odume ON, Baek MJ, Mercado-Silva N, Nakamura K, Jae Y, Chen K, Campbell I, Martins RT, Arimoro FO, Kefford BJ, Moya N, Devi R, Keke UN, Lintermans M, Alves CBM, Monk W, Mori T, Pompeu PS, Robinson W, Shah DN, Sueyoshi M. 2022. Fish and macroinvertebrate assemblages reveal extensive degradation of the world's rivers. Global Change Biol. doi.org/10.1111/gcb.16439 [Google Scholar]
- Ferreira WR, Hepp LU, Ligeiro R, Macedo DR, Hughes RM, Kaufmann PR, Callisto M. 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecol Indicat 72: 365–373. [CrossRef] [Google Scholar]
- Fierro P, Hughes RM, Valdovinos C. 2021. Temporal variability of macroinvertebrate assemblages in a Mediterranean coastal stream: implications for bioassessments. Neotrop Entomol 50: 873–885. [CrossRef] [PubMed] [Google Scholar]
- Firmiano KR, Ligeiro R, Macedo DR, Juen J, Hughes RM, Callisto M. 2017. Mayfly bioindicator thresholds for several anthropogenic disturbances in neotropical savanna streams. Ecol Indicat 74: 276–284. [CrossRef] [Google Scholar]
- Garcia-Giron J, Bini LM, Heino J. 2023. Shortfalls in our understanding of the causes and consequences of functional and phylogenetic variation of freshwater communities across continents. Biol Conserv. doi.org/10.1016/j.biocon.2023.110082 [Google Scholar]
- Gerth WJ, Li J, Giannico GR. Agricultural land use and macroinvertebrate assemblages in lowland temporary streams of the Willamette Valley, Oregon, USA. Agric Ecosys Environ 236:xxxx 154–165. [Google Scholar]
- Hering D, Moog O, Sandin L, Verdonschot PFM. 2004. Overview and application of the AQEM assessment system. Hydrobiology 516: 1–30. [CrossRef] [Google Scholar]
- Herlihy AT, Paulsen SG, Van Sickle J, Stoddard JL, Hawkins CP, Yuan LL. 2008. Striving for consistency in a national assessment: the challenges of applying a reference-condition approach at a continental scale. J N Amer Benthol Soc. 27: 860–877. [Google Scholar]
- Herlihy AT, Sifneos JC, Hughes RM, Peck DV, Mitchell RM, 2019. Lotic fish assemblage clusters across the conterminous USA and their associations with local- and catchment-scale landscape variables. Am Fish Soc Symp 90: 385–408. [Google Scholar]
- Herlihy AT, Sifneos JC, Hughes RM, Peck DV, Mitchell RM. 2020. Relation of lotic fish and benthic macroinvertebrate condition indices to environmental factors across the conterminous USA. Ecol Indicat 112: 105958. [CrossRef] [Google Scholar]
- Hill RA, Fox EW, Leibowitz SG, Olsen AR, Thornbrugh DJ, Weber MH. 2017. Predictive mapping of the biotic condition of conterminous U.S. rivers and streams. Ecol Appl 27: 2397–2415. [CrossRef] [PubMed] [Google Scholar]
- Hocutt CH, Wiley EO. 1986. The zoogeography of North American freshwater fishes. New York: Wiley. [Google Scholar]
- Hughes RM, Peck DV. 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. J N Amer Benthol Soc 27: 837–859. [CrossRef] [Google Scholar]
- Hughes RM, Vadas RL. 2021. Agricultural effects on streams and rivers: a western USA focus. Water 13. doi.org/10.3390/w13141901 [Google Scholar]
- Hughes RM, Kaufmann PR, Herlihy A, Kincaid TM, Reynolds L, Larsen DP. 1988. A process for developing and evaluating indices of fish assemblage integrity. Can J Fish Aquat Sci 55: 1618–1631. [CrossRef] [Google Scholar]
- Hughes RM, Rinne JN, Calamusso B. 2005. Historical changes in large river fish assemblages of the Americas: a synthesis. Am Fish Soc Symp 45: 603–612. [Google Scholar]
- Hughes RM, Herlihy AT, Gerth WJ, Pan Y. 2012. Estimating vertebrate, benthic macroinvertebrate and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ Monitor Assess 184: 3185–3198. [CrossRef] [PubMed] [Google Scholar]
- Hughes RM, Infante DM, Wang L, Chen K, Terra BF, editors. 2019. Advances in Understanding Landscape Influences on Freshwater Habitats and Biological Assemblages. American Fisheries Society, Bethesda. [Google Scholar]
- Hughes RM, Herlihy AT, Peck DV. 2021. Sampling effort for estimating fish species richness in western USA river sites. Limnologica 87. doi:10.1016/j.limno.2021.125859 [CrossRef] [PubMed] [Google Scholar]
- Hughes RM, Herlihy AT, Gerth WJ, Pan Y. 2012. Estimating vertebrate, benthic macroinvertebrate and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ Monitor Assess 184: 3185–3198. [CrossRef] [PubMed] [Google Scholar]
- Jenkins C, Van Houtan K, Pimm S, Sexton J. 2015. US protected lands mismatch biodiversity priorities. Proc Nat Acad Sci 112: 5081–5086. [CrossRef] [PubMed] [Google Scholar]
- Kanno Y, Vokoun JC, Dauwalter D, Hughes RM, Herlihy AT., Maret TR, Patton TM. 2009. Influence of rare species on electrofishing distance-species richness relationships at stream sites. Trans Am Fish Soc 138: 1240–1251. [CrossRef] [Google Scholar]
- Kaufmann PR, Hughes RM, Whittier TR, Bryce SA, Paulsen SG. 2014. Relevance of lake physical habitat assessment indices to fish and riparian birds. Lake Reserv Manage 30: 177–191. [CrossRef] [Google Scholar]
- Kaufmann PR, Hughes RM, Paulsen SG, Peck DV, Seeliger C, Weber M, Mitchell RM. 2022a. Physical habitat in conterminous US streams and rivers, part 1: Geoclimatic controls and anthropogenic alteration. Ecol Indicat. doi: 10.1016/j.ecolind.2022.109046 [Google Scholar]
- Kaufmann PR, Hughes RM, Paulsen SG, Peck DV, Seeliger C, Kincaid T, Mitchell RM. 2022b. Physical habitat in conterminous US streams and rivers, part 2: Quantitative assessment of condition. Ecol Indicat. doi: 10.1016/j.ecolind.2022.109047 [Google Scholar]
- Leal CG, Barlow J, Gardner T, Hughes RM, Leitão RP, MacNally R, Kaufmann P, Ferraz SFB, Zuanon J, de Paula FR, Ferreira J, Thomson JR, Lennox GD, Dary EP, Röpke CP, Pompeu PS. 2018. Is environmental legislation conserving tropical stream faunas? A large-scale assessment of local, riparian and catchment-scale influences on Amazonian fish. J Appl Ecol 55: 1312–1326. [CrossRef] [PubMed] [Google Scholar]
- Leal CG, Lennox GD, Ferraz SFB, Ferreira J, Gardner TA, Thomson JR, Berenguer E, Lees AC, Hughes RM, MacNally R, Aragão LEOC, de Brito JG, Castello L, Garrett RD, Hamada N, Juen L, Leitão RP, Louzada J, Morello TF, Moura NG, Nessimian JL, Oliveira-Junior JMB, de Oliveira VHF, de Oliveira VC, Parry L, Pompeu PS, Solar RRC, Zuanon J, Barlow J. 2020. Integrated terrestrial-freshwater planning doubles tropical aquatic species conservation. Science 370: 117–121. [CrossRef] [PubMed] [Google Scholar]
- Lenat DR, Resh VH. 2001. Taxonomy and stream ecology — the benefits of genus- and species-level identifications. J N Amer Benthol Soc 20: 287–298. [CrossRef] [Google Scholar]
- Leroy B, Dias MS, Giraud E, Hugueny B, Jézéquel C, Leprieur F, Oberdorff T, Tedesco PA. 2019. Global biogeographical regions of freshwater fish species. J Biogeogr 46: 2407–2419. [CrossRef] [Google Scholar]
- Li J, Herlihy A, Gerth W, Kaufmann P, Gregory S, Urquhart S, Larsen DP. 2001. Variability in stream macroinvertebrates at multiple spatial scales. Freshwat Biol 46: 87–97. [CrossRef] [Google Scholar]
- Li L, Liu L, Hughes RM, Cao Y, Wang X. 2014. Towards a protocol for stream macroinvertebrate sampling in China. Environ Monitor Assess 186: 469–479. [CrossRef] [PubMed] [Google Scholar]
- Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2: 18–22. [Google Scholar]
- Ligeiro R, Melo A, Callisto M. 2010. Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshw Biol 55: 424–435. [CrossRef] [Google Scholar]
- Ligeiro R, Hughes RM, Kaufmann PR, Macedo DR, Firmiano KR, Ferreira WR, Oliveira D, Melo AS, Callisto M. 2013a. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecol Indicat 25: 45–57. [CrossRef] [Google Scholar]
- Ligeiro R, Ferreira W, Hughes RM, Callisto M. 2013b. One caveat when using fixed-area subsampling methods to estimate macroinvertebrate richness: a case study with Neotropical stream data. Environ Monitor Assess 185: 4077–4085. [CrossRef] [PubMed] [Google Scholar]
- Lomnicky GA, Whittier TR, Hughes RM, Peck DV. 2007. Distribution of nonnative aquatic vertebrates in western U.S. streams and rivers. N Amer J Fish Manage. 27: 1082–1093. [Google Scholar]
- Macedo DR, Hughes RM, Ligeiro R, Ferreira WR, Castro M, Junqueira NT, Silva DRO, Firmiano KR, Kaufmann PR, Pompeu PS, Callisto M. 2014. The relative influence of multiple spatial scale environmental predictors on fish and macroinvertebrate assemblage richness in cerrado ecoregion streams, Brazil. Landsc Ecol 29: 1001–1016. [CrossRef] [Google Scholar]
- Maloney KO, Manguia P, Mitchell RM. 2011. Anthropogenic disturbance and landscape patterns affect diversity patterns of aquatic benthic macroinvertebrates. J N Amer Benthol Soc 30: 284–295. [CrossRef] [Google Scholar]
- Martins RT, Brito J, Dias-Silva K, Leal CG, Leitao RP, Oliveira VC, de Oliveira-Junior JMB, Ferraz SFB, de Paula FR, Roque FO, Hamada N, Juen L, Nessimian JL, Pompeu PS, Hughes RM. 2021. Low forest-loss thresholds threaten Amazonian fish and macroinvertebrate assemblage integrity. Ecol Indicat. doi: 10.1016/j.ecolind.2021.107773 [Google Scholar]
- Mason GT, Arndt RE. 1996. Mineral resources data system (MRDS). USGS Data Series 20. doi: 10.3133/ds20 [Google Scholar]
- McCormick FH, Hughes RM, Kaufmann PR, Herlihy AT, Peck DV. 2001. Development of an index of biotic integrity for the Mid-Atlantic Highlands Region. Trans Amer Fish Soc. 130: 857–877. [Google Scholar]
- McGarvey DJ, Hughes RM. 2008. Longitudinal zonation of Pacific Northwest (U.S.A.) fish assemblages and the species-discharge relationship. Copeia 2008: 311–321. [CrossRef] [Google Scholar]
- McGarvey DJ, Terra BF. 2016. Using river discharge to model and deconstruct the latitudinal diversity gradient for fishes of the Western Hemisphere. J Biogeogr 43: 1436–1449. [Google Scholar]
- McGarvey DJ, Ward M. 2008. Scale dependence in the species-discharge relationship for fishes of the southeastern U.S.A. Freshwat Biol 53: 2206–2219. [Google Scholar]
- Mebane CA, Maret TR, Hughes RM. 2003. An index of biological integrity (IBI) for Pacific Northwest rivers. Trans Amer Fish Soc 132: 239–261. [CrossRef] [Google Scholar]
- Meyer J, Strayer DL, Wallace JB, Eggert SL, Helfman GS, Leonard NE 2007. The contribution of headwater streams to biodiversity in river networks. J Am Wat Resour Assoc 43: 86–103. [CrossRef] [Google Scholar]
- Morse JC, Stark BP, McCafferty WP, Tennessen KJ. 1997. Southern Appalachian and other southeastern streams at risk: implications for mayflies, dragonflies, damselflies, stoneflies and caddisflies. In Benz GW, Collins DE eds. Aquatic Fauna in Peril: the Southeastern Perspective, Southeastern Aquatic Re search Institute, Special Publication 1. Lenz Design and Communications, Decatur, Georgia, 17–42. [Google Scholar]
- Mostafavi H, Kordajazi Z, Valavi R, Shafizadeh-Moghadam H, Kambouzia J, Infante DM. 2019. Ensemble modeling of sensitive stream fish species distributions in Iran: expanding knowledge to aid species conservation. Amer Fish Soc Symp 90: 441–462. [Google Scholar]
- Nelson JS, Crossman EJ, Espinosa-Pérez H, Findley LT, Gilbert CR, Lea RN, Williams JD. 2004. Common and Scientific Names of Fishes from the United States Canada and Mexico. Bethesda: American Fisheries Society. [Google Scholar]
- Oberdorff T, Guégan J-F., Hugueny B. 1995. Global scale patterns of fish species richness in rivers. Ecography 18: 345–352. [CrossRef] [Google Scholar]
- Oliveira-Junior JMB, Shimano Y, Gardner TA,Hughes RM., de Marco Junior P, Juen L. 2015. Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the Eastern Amazon. Austral Ecol 40: 733–744. [CrossRef] [Google Scholar]
- Olsen AR, Peck DV. 2008. Survey design and extent estimates for the Wadeable Streams Assessment. J N Amer Benthol Soc 27: 822–836. [CrossRef] [Google Scholar]
- Omernik JM. 1987. Ecoregions of the conterminous United States. Ann Assoc Amer Geogr 77: 118–125. [CrossRef] [Google Scholar]
- Page LM, Espinosa-Pérez H, Findley LT, Gilbert CR, Lea RN, Mandrak NE, Mayden RL, Nelson JS. 2013. Common and Scientific Names of Fishes from the United States Canada and Mexico. American Fisheries Society, Bethesda. [Google Scholar]
- Pompeu PS, Carvalho DR, Leal CG, Leitão RP, Alves CBM, Braga DF, Castro MA, Junqueira NT, Zuanon J, Hughes RM. 2021. Sampling efforts for determining fish species richness in megadiverse tropical regions. Environ Biol Fish. doi: 10.1007/s10641-021-01184-7 [Google Scholar]
- R Core Team, 2020. R: a Language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/ [Google Scholar]
- Rumschlag, SL, Mahon MB, Jones DK, Battaglin W, Behrens J, Bernhardt ES, Bradley P, Brown E, de Laender F, Hill R, Kunz S, Lee S, Rosi E, Schafer R, Schmidt TS, Simonin M, Smalling K, Voss K, Rohr JR. 2023. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci Adv 9. doi:10.1126/sciadv.adf4896 [CrossRef] [PubMed] [Google Scholar]
- Shurin JB, Havel JE, Leibold MA, Pinel-Alloul B. 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062–3073. [CrossRef] [Google Scholar]
- Silva DRO, Ligeiro R, Hughes RM, Callisto M. 2016. The role of physical habitat and sampling effort on estimates of benthic macroinvertebrate taxonomic richness at basin and site scales Environ Monitor Assess 188: 340. [CrossRef] [PubMed] [Google Scholar]
- Silva DRO, Herlihy AT, Hughes RM, Macedo, DR, Callisto M. 2018. Assessing the extent and relative risk of aquatic stressors on stream macroinvertebrate assemblages in the neotropical savanna. Sci Tot Environ 633: 179–188. [CrossRef] [Google Scholar]
- Smith KL, Jones ML 2005. Watershed-level sampling effort requirements for determining riverine fish species composition. Can J Fish Aquat Sci 62: 1580–1588. [CrossRef] [Google Scholar]
- Smith GR, Badgley C, Eiting TP, Larson PS. 2010. Species diversity gradients in relation to geological history in North American freshwater fishes. Evolut Ecol Res 12: 693–726. [Google Scholar]
- Stevens DL, Olsen AR. 2004. Spatially balanced sampling of natural resources. J Am Stat Assoc 99: 262–278. [CrossRef] [Google Scholar]
- Su G, Logez M, Xu J, Tao S, Villéger S, Brosse S. 2021. Human impacts on global freshwater fish biodiversity. Science 371: 835–838. [Google Scholar]
- Tedesco PA, Leprieur F, Hugueny B, Brosse S, Durr HH, Beauchard O, Busson F, Oberdorff T. 2012. Patterns and processes of global riverine fish endemism. Global Ecol Biogeogr 21: 977–987. [CrossRef] [Google Scholar]
- Terra BDF, Hughes RM, Araujo FG. 2013. Sampling sufficiency for fish assemblage surveys of Atlantic Forest streams, southeastern Brazil. Fisheries 38: 150–158. [CrossRef] [Google Scholar]
- The White House. 2021. Executive order on tackling the climate crisis at home and abroad. Section 216. https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/ [Google Scholar]
- Tonn WM. 1990. Climate change and fish communities: a conceptual framework. Trans Am Fish Soc 119: 337–352. [CrossRef] [Google Scholar]
- Twardochleb L, Hiltner E, Pyne M, Sarnetske P. 2021 Freshwater insects CONUS: a database of freshwater insect occurrences and traits for the contiguous United States. Global Ecol Biogeogr 30: 826–841. [CrossRef] [PubMed] [Google Scholar]
- USEPA (United States Environmental Protection Agency). 2009. National Rivers and Streams Assessment: field operations manual. EPA 841/B-04/004, Office of Water and Office of Environmental Information, U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2012. National Rivers and Streams Assessment 2013‐2014: Laboratory Operations Manual. EPA‐841‐B‐12‐010. Office of Water. U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2013a. National Rivers and Streams Assessment 2013/14: field operations manual − wadeable. EPA 841/B-12/009b, Office of Water and Office of Environmental Information, U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2013b. National Rivers and Streams Assessment 2013/14: field operations manual-non-wadeable. EPA 841/B-12/009a, Office of Water and Office of Environmental Information, U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2016a. National Rivers and Streams Assessment 2008–2009 technical report. EPA 841/R-16/008, Office of Water and Office of Research and Development. U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2016b. National Rivers and Streams Assessment 2008-2009: a collaborative survey. EPA/841/R-16/007. Office of Water and Office of Research and Development, U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2020. National Rivers and Streams Assessment 2013-2014: a collaborative survey. EPA841-R- 19–001. Office of Water and Office of Research and Development, U.S. Environmental Protection Agency, Washington. [Google Scholar]
- USEPA (United States Environmental Protection Agency), 2021. Level III and IV ecoregions of the continental United States. https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states [Google Scholar]
- USGS (United States Geological Survey), 2013a. National hydrography geodatabase: the national map viewer. https://viewer.nationalmap.gov/viewer/nhd.html?p=nhd [Google Scholar]
- USGS (U.S. Geological Survey, U.S. Department of Agriculture, & Natural Resources Conservation Service), 2013b. Federal standards and procedures for the national watershed boundary dataset (WBD). TM 11-A3 Section A: Federal Standards in Book 11 Collection and Delineation of Spatial Data. https://www.usgs.gov/core-science-systems/ngp/national-hydrography/watershed-boundary-dataset [Google Scholar]
- Vadas RLJr, Hughes RM, Bello-Gonzales O, Callisto M, Carvalho D, Chen K, Davies PE, Ferreira MT, Fierro P, Harding JS, Kleynhans CJ, Macedo DR, Mercado-Silva N, Moya N, Nichols SJ, Pompeu PS, Ruaro R, Stevenson RJ, Terra BF, Thirion C, Ticiani D, Yoder CO. 2022. Assemblage-based biomonitoring of freshwater ecosystem health via multimetric indices: a critical review and suggestions for improving their applicability. Wat Biol Secur. doi.org/10.1016/j.watbs.2022.100054 [Google Scholar]
- Valdez JW, Callaghan CT, Junker J, Purvis A, Hill SLL, Pereira HM. 2023. The undetectability of global biodiversity trends using local species richness. Ecography. doi: 10.1111/ecog.06604 [Google Scholar]
- Vinson MR, Hawkins CP. 2003. Broad-scale geographical patterns in local stream insect genera richness. Ecography 26: 751–767. [CrossRef] [Google Scholar]
- Whittaker RH. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30: 279–338. [Google Scholar]
- Whittier TR, Paulsen SG, Larsen DP, Peterson SA, Herlihy AT, Kaufmann PR. 2002. Indicators of ecological stress and their extent in the population of northeastern lakes: a regional assessment. BioScience 52: 235–247. [CrossRef] [Google Scholar]
- Yang L, Jin S, Danielson P, Homer C, Gass L, Bender SM, Case A, Costello C, Dewitz J, Fry J, Funk M, Granneman B, Liknes GC, Rigge M, Xian G. 2018. A new generation of the United States national land cover database: requirements, research priorities, design, and implementation strategies. J Photogram Remote Sens 146: 108–123. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.