Knowl. Manag. Aquat. Ecosyst.
Number 424, 2023
Freshwater ecosystems management strategies
Article Number 20
Number of page(s) 12
Published online 25 July 2023
  • Aber A, Ferrari G, Porcile JF, Rodríguez E, Zerbino S. 2012. Identificación de prioridades para la gestión nacional de las especies exóticas invasoras, MVOTMA-DINAMA, Montevideo. [Google Scholar]
  • Adams M, Pearl C. 2007. Problems and opportunities managing invasive Bullfrogs: is there any hope? In: Gherardi F, ed. Biological invaders in inland waters: Profiles, distribution, and threats. Dordrecht: Springer pp. 679–693. [CrossRef] [Google Scholar]
  • Álvarez A, Blum A, Gallego F. 2015. Atlas de Cobertura de Suelos del Uruguay, DINOT, FAO, Montevideo. [Google Scholar]
  • Arrieta D, Borteiro C, Kolenc F, Langone JA. 2013. Anfibios. In Soutullo A, Clavijo C, Martínez-Lanfranco JA eds. Especies prioritarias para la conservación en Uruguay: Vertebrados, moluscos continentales y plantas vasculares, SNAP, MVOTMA, Montevideo pp. 113–127. [Google Scholar]
  • Ballari SA, Anderson CB, Valenzuela AEJ. 2016. Understanding trends in biological invasions by introduced mammals in southern South America: a review of research and management: Invasive mammals in southern South America. Mamm Rev 46: 229–240. [CrossRef] [Google Scholar]
  • Barbosa FG, Both C, Araújo MB. 2017. Invasive American bullfrogs and African clawed frogs in South America: high suitability of occurrence in biodiversity hotspots. Zool Stud 56: e28. [PubMed] [Google Scholar]
  • Bissattini AM, Buono V, Vignoli L. 2018. Field data and worldwide literature review reveal that alien crayfish mitigate the predation impact of the American bullfrog on native amphibians. Aquat Conserv 28: 1465–1475. [CrossRef] [Google Scholar]
  • Bissattini AM, Buono V, Vignoli L. 2019. Disentangling the trophic interactions between American bullfrogs and native anurans: Complications resulting from post‐metamorphic ontogenetic niche shifts. Aquat Conserv 29: 270–281. [CrossRef] [Google Scholar]
  • Blaustein AR, Jones DK, Urbina J, et al. 2020. Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol Invasions 22: 1771–1784. [CrossRef] [Google Scholar]
  • Blaustein AR, Kiesecker JM. 2002. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol Lett 5: 597–608. [CrossRef] [Google Scholar]
  • Both C, Grant T. 2012. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol Lett 8: 714–716. [CrossRef] [PubMed] [Google Scholar]
  • Both C, Melo AS. 2015. Diversity of anuran communities facing bullfrog invasion in Atlantic Forest ponds. Biol Invasions 17: 1137–1147. [CrossRef] [Google Scholar]
  • Both C, Solé M, Dos Santos TG, Cechin SZ. 2009. The role of spatial and temporal descriptors for neotropical tadpole communities in southern Brazil. Hydrobiologia 624: 125–138. [CrossRef] [Google Scholar]
  • Brazeiro A. 2015. Eco-regiones de Uruguay: biodiversidad, presiones y conservación: aportes a la Estrategia Nacional de Biodiversidad, Universidad de la República, Montevideo. [Google Scholar]
  • Bucciarelli GM, Blaustein AR, Garcia TS, Kats LB. 2014. Invasion complexities: the diverse impacts of nonnative species on amphibians. Copeia 2014: 611–632. [CrossRef] [Google Scholar]
  • Comité de Especies Exóticas Invasoras. 2018a. Protocolo de Respuesta ante Invasiones Biológicas de Especies Exóticas Invasoras. [online] Available at: [ Accessed 12 May 2022]. [Google Scholar]
  • Comité de Especies Exóticas Invasoras. 2018b. Plan Piloto de Erradicación de Rana toro, en Aceguá (Cerro Largo). [online] Available at: [ Accessed 12 May 2022]. [Google Scholar]
  • Cook MT, Heppell SS, Garcia TS. 2013. Invasive bullfrog larvae lack developmental plasticity to changing hydroperiod. J Wildl Manag 77: 655–662. [CrossRef] [Google Scholar]
  • Csardi CN, Nepusz T (2006) The igraph software package for complex network research. Interjournal Complex Syst 1695:1–9. [Google Scholar]
  • Descamps S, De Vocht A. 2016. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg J Zool 146: 90–100. [Google Scholar]
  • Descamps S, De Vocht A. 2023. State-of-the-art approach on the management of invasive faunistic aquatic alien species: the American bullfrog in Belgium. Environ Challenges 11: 100690. [CrossRef] [Google Scholar]
  • Di Minin E, Soutullo A, Bartesaghi L, Rios M, Szephegy MN, Moilanen AT. 2017. Integrating biodiversity, ecosystem services and socio-economic data to identify priority areas and landowners for conservation actions at the national scale. Biol Conserv 206: 56–64. [CrossRef] [Google Scholar]
  • Dodd CK. 2010. Amphibian ecology and conservation: a handbook of techniques. Oxford: Oxford University Press. [Google Scholar]
  • Drake JC, Griffis-Kyle KL, McIntyre NE. 2017. Graph theory as an invasive species management tool: case study in the Sonoran Desert. Landsc Ecol 32: 1739–1752. [CrossRef] [Google Scholar]
  • Everts T, Van Driessche C, Neyrinck S, et al. 2022. Using quantitative eDNA analyses to accurately estimate American bullfrog abundance and to evaluate management efficacy. Environ DNA 00: 1–13. [Google Scholar]
  • Ficetola GF, Maiorano L, Falcucci A, et al. 2010. Knowing the past to predict the future: land-use change and the distribution of invasive bullfrogs. Glob Chang Biol 16: 528–537. [CrossRef] [Google Scholar]
  • Fisher RN, Shaffer HB. 1996. The decline of amphibians in California's Great Central Valley. Conserv Biol 10: 1387–1397. [CrossRef] [Google Scholar]
  • Fletcher RJ, Acevedo MA, Reichert BE, Pias KE, Kitchens WM. 2011. Social network models predict movement and connectivity in ecological landscapes. Proc Natl Acad Sci 108: 19282–19287. [CrossRef] [PubMed] [Google Scholar]
  • Garner TW, Perkins MW, Govindarajulu P, et al. 2006. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol lett 2: 455–459. [CrossRef] [PubMed] [Google Scholar]
  • Guimera R, Amaral LAN. 2005. Cartography of complex networks: modules and universal roles. J Stat Mech 2005: P 02001. [Google Scholar]
  • Gobel N, Laufer G, Cortizas S. 2019. Changes in aquatic communities recently invaded by a top predator: evidence of American bullfrogs in Aceguá, Uruguay. Aquat Sci 81: 8. [CrossRef] [Google Scholar]
  • Gobel N, Laufer G, Gonzalez-Bergonzoni I, Soutullo A, Arim M. 2023. Invariant and vulnerable food web components after bullfrog invasion. Biol Invasions 25: 901–916. [CrossRef] [Google Scholar]
  • Grattarola F, Martínez-Lanfranco JA, Botto G, et al. 2020. Multiple forms of hotspots of tetrapod biodiversity and the challenges of open-access data scarcity. Sci Rep 10: 1–15. [CrossRef] [PubMed] [Google Scholar]
  • Groffen J, Kong S, Jang Y, Borzee A. 2019. The invasive American bullfrog (Lithobates catesbeianus) in the Republic of Korea: history and recommendations for population control. Manag Biol Invasions 10: 517. [CrossRef] [Google Scholar]
  • Hartel T, Nemes S, Cogălniceanu D, et al. 2007. The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583: 173–182. [CrossRef] [Google Scholar]
  • Hecnar SJ, M'Closkey RT. 1997. Changes in the composition of a ranid frog community following bullfrog extinction. Am Midl Nat 1997: 145–150. [CrossRef] [Google Scholar]
  • Heyer R, Donnelly MA, Foster M, Mcdiarmid R. 2014. Measuring and monitoring biological diversity: standard methods for amphibians. Washington DC: Smithsonian Institution Press. [Google Scholar]
  • Jancowski K, Orchard S. 2013. Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota 16: 17. [Google Scholar]
  • Jeschke JM, Strayer DL. 2006. Determinants of vertebrate invasion success in Europe and North America. Glob Chang Biol 12: 1608–1619. [CrossRef] [Google Scholar]
  • Kaefer ÍL, Boelter RA, Cechin SZ. 2007. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. Annales Zoologici Fennici 44: 435–444. [Google Scholar]
  • Kamoroff C, Daniele N, Grasso RL, Rising R, Espinoza T, Goldberg CS. 2020. Effective removal of the American bullfrog (Lithobates catesbeianus) on a landscape level: long term monitoring and removal efforts in Yosemite Valley, Yosemite National Park. Biol Invasions 22: 617–626. [Google Scholar]
  • Kats LB, Ferrer RP. 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Divers Distrib 9: 99–110. [CrossRef] [Google Scholar]
  • Kiesecker JM, Blaustein AR, Miller CL. 2001. Potential mechanisms underlying the displacement of native red-legged frogs by introduced bullfrogs. Ecology 82: 1964–1970. [CrossRef] [Google Scholar]
  • Kraus F. 2009. Alien reptiles and amphibians: a scientific compendium and analysis. Dordrecht: Springer. [Google Scholar]
  • Kupferberg S. 1997. Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshw Biol 37: 427–439. [CrossRef] [Google Scholar]
  • Latombe G, Pyšek P, Jeschke JM, Blackburn TM, Bacher S, Capinha C, et al. 2016. A vision for global monitoring of biological invasions. Biol Conserv 213: 295–308. [Google Scholar]
  • Laufer G, Canavero A, Núñez D, Maneyro R. 2008. Bullfrog (Lithobates catesbeianus) invasion in Uruguay. Biol Invasions 10: 1183–1189. [CrossRef] [Google Scholar]
  • Laufer G, Gobel N. 2017. Habitat degradation and biological invasions as a cause of amphibian richness loss: a case report in Aceguá, Cerro Largo, Uruguay. Phyllomedusa 16: 289–293. [CrossRef] [Google Scholar]
  • Laufer G, Gobel N, Berazategui M, et al. 2021. American bullfrog (Lithobates catesbeianus) diet in Uruguay compared with other invasive populations in Southern South America. North-West J Zool 17: 196–203. [Google Scholar]
  • Laufer G, Gobel N, Borteiro C, Soutullo A, Martínez-Debat C, de Sá RO. 2018a. Current status of American bullfrog, Lithobates catesbeianus, invasion in Uruguay and exploration of chytrid infection. Biol Invasions 20: 285–291. [CrossRef] [Google Scholar]
  • Laufer G, Gobel N, Kacevas N, Lado I. 2018b. Una nueva población feral de rana toro (Lithobates catesbeianus) en Uruguay, encontrada con participación ciudadana. Rev Latinoam Herpetol 1: 47–50. [CrossRef] [Google Scholar]
  • Laufer G, Gobel N, Soutullo A, Martínez-Debat C, de Sá RO. 2017. Assessment of the calling detection probability throughout the day of two invasive populations of bullfrog (Lithobates catesbeianus) in Uruguay. Cuadernos Herpetol 31: 29–32. [Google Scholar]
  • Lesbarrères D, Balseiro A, Brunner J, et al. 2012. Ranavirus: past, present and future. Biol Lett 8: 481–483. [CrossRef] [PubMed] [Google Scholar]
  • Li Y, Ke Z, Wang Y, Blackburn TM. 2011. Frog community responses to recent American bullfrog invasions. Curr Zool 57: 83–92. [CrossRef] [Google Scholar]
  • Liu X, Wang S, Ke Z, et al. 2018. More invaders do not result in heavier impacts: The effects of non‐native bullfrogs on native anurans are mitigated by high densities of non‐native crayfish. J Anim Ecol 87: 850–862. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Lombardo I, Elgue E, Villamil J, Maneyro R. 2016. Registro de una población asilvestrada de rana toro (Lithobates catesbeianus) (Amphibia: Anura: Ranidae) en el departamento de Maldonado, Uruguay. Bol Soc Zool Uruguay 25: 61–65. [Google Scholar]
  • Louette G, Devisscher S, Adriaens T. 2013. Control of invasive American bullfrog Lithobates catesbeianus in small shallow water bodies. Eur J Wildl Res 59: 105–114. [CrossRef] [Google Scholar]
  • Melchiors J, Di-Bernardo M, Pontes GMF, de Oliveira RB, Solé M, Kwet A. 2004. Reproduction of Pseudis minuta (Anura, Hylidae) in southern Brazil. Phyllomedusa 3: 61–68. [CrossRef] [Google Scholar]
  • Minor ES, Urban DL. 2008. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv Biol 22: 297–307. [CrossRef] [PubMed] [Google Scholar]
  • Minowa S, Senga Y, Miyashita T. 2008. Microhabitat Selection of the Introduced Bullfrogs (Rana catesbeiana) in Paddy Fields in Eastern Japan. Curr Herpetol 27: 55–59. [CrossRef] [Google Scholar]
  • Moore TL, Hunt WF. 2012. Ecosystem service provision by stormwater wetlands and ponds − a means for evaluation? Water Res 46: 6811–6823. [CrossRef] [PubMed] [Google Scholar]
  • Moreira LFB, Machado IF, Lace ARGM, Maltchik L. 2007. Calling period and reproductive modes in an anuran community of a temporary pond in southern Brazil. S Am J Herpetol 2: 129–135. [CrossRef] [Google Scholar]
  • Newman M, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:1–16. [Google Scholar]
  • Nie M, Crim JD, Ultsch GR. 1999. Dissolved oxygen, temperature, and habitat selection by bullfrog (Rana catesbeiana) tadpoles. Copeia 1999: 153–162. [CrossRef] [Google Scholar]
  • Oda FH, Guerra V, Grou E, et al. 2019. Native anuran species as prey of invasive American Bullfrog, Lithobates catesbeianus, in Brazil: a review with new predation records. Amphib Reptile Conserv 13: 217–226. [Google Scholar]
  • Pearl CA, Adams MJ, Bury RB, McCreary B. 2004. Asymmetrical effects of introduced bullfrogs (Rana catesbeiana) on native ranid frogs in Oregon. Copeia 2004: 11–20. [CrossRef] [Google Scholar]
  • Peterson AC, Richgels KL, Johnson PT, McKenzie VJ. 2013. Investigating the dispersal routes used by an invasive amphibian, Lithobates catesbeianus, in human-dominated landscapes. Biol Invasions 15: 2179–2191. [CrossRef] [Google Scholar]
  • Pluess T, Jarošík V, Pyšek P, et al. 2012. Which factors affect the success or failure of eradication campaigns against alien species? PloS ONE 7: e48157. [CrossRef] [PubMed] [Google Scholar]
  • Polo-Cavia N, Gonzalo A, López P, Martín J. 2010. Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Anim Behav 80: 461–466. [CrossRef] [Google Scholar]
  • R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Google Scholar]
  • Ribeiro LP, Carvalho T, Becker CG, et al. 2019. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Sci Rep 9: 1–10. [PubMed] [Google Scholar]
  • Ricciardi A, Blackburn TM, Carlton JT, et al. 2017. Invasion science: A horizon scan of emerging challenges and opportunities. Trends Ecol Evol 32: 464–474. [CrossRef] [PubMed] [Google Scholar]
  • Ruibal M, Laufer G. 2012. Bullfrog Lithobates catesbeianus (Amphibia: Ranidae) tadpole diet: description and analysis for three invasive populations in Uruguay. Amphib-Reptil 33: 355–363. [CrossRef] [Google Scholar]
  • Schiesari L, Werner EE, Kling GW. 2009. Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshw Biol 54: 572–586. [CrossRef] [Google Scholar]
  • Schloegel LM, Toledo LF, Longcore JE, et al. 2012. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21: 5162–5177. [CrossRef] [PubMed] [Google Scholar]
  • Schwindt E, Bortolus A. 2017. Aquatic invasion biology research in South America: geographic patterns, advances and perspectives. Aquat Ecosyst Health Manag 20: 322–333. [CrossRef] [Google Scholar]
  • Seebens H, Blackburn TM, Dyer EE, et al. 2017. No saturation in the accumulation of alien species worldwide. Nat Commun 8: 1–9. [CrossRef] [PubMed] [Google Scholar]
  • Semlitsch RD, Peterman WE, Anderson TL, Drake DL, Ousterhout BH. 2015. Intermediate pond sizes contain the highest density, richness, and diversity of pond-breeding amphibians. PLoS ONE 10: e0123055. [CrossRef] [PubMed] [Google Scholar]
  • Sih A, Bolnick DI, Luttbeg B, et al. 2010. Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119: 610–621. [CrossRef] [Google Scholar]
  • Silva ETD, Both C, Ribeiro Filho OP. 2016. Food habits of invasive bullfrogs and native thin-toed frogs occurring in sympatry in southeastern Brazil. S Am J Herpetol 11: 25–33. [CrossRef] [Google Scholar]
  • Silva ETD, Ribeiro Filho OP, Feio RN. 2011. Predation of Native Anurans by invasive bullfrogs in southeastern Brazil: spatial variation and effect of microhabitat use by prey. S Am J Herpetol 6: 1–10. [CrossRef] [Google Scholar]
  • Silveira SDS, Guimarães M. 2021. The enemy within: consequences of the invasive bullfrog on native anuran populations. Biol Invasions 23: 373–378. [CrossRef] [Google Scholar]
  • Simberloff D, Parker IM, Windle PN. 2005. Introduced species policy, management, and future research needs. Front Ecol Environ 3: 12–20. [CrossRef] [Google Scholar]
  • Smith GR, Rettig JE, Mittelbach GG, Valiulis JM, Schaack SR. 1999. The effects of fish on assemblages of amphibians in ponds: a field experiment. Freshw Biol 41: 829–837. [CrossRef] [Google Scholar]
  • Speziale KL, Lambertucci SA, Carrete M, Tella JL. 2012. Dealing with non-native species: what makes the difference in South America? Biol Invasions 14: 1609–1621. [CrossRef] [Google Scholar]
  • Strauss A, White A, Boots M. 2012. Invading with biological weapons: the importance of disease-mediated invasions. Funct Ecol 26: 1249–1261. [Google Scholar]
  • Sutherland WJ, Dicks LV, Ockendon N, Smith RK. 2019. What Works in Conservation. Cambridge: Open Book Publishers. [Google Scholar]
  • Tasker BR, Honebein KN, Erickson AM, et al. 2022. Effects of elevated temperature, reduced hydroperiod, and invasive bullfrog larvae on pacific chorus frog larvae. PLoS ONE 17: e0265345. [CrossRef] [PubMed] [Google Scholar]
  • Teixeira de Mello F, González-Bergonzoni I,Loureiro M. 2011. Peces de agua dulce del Uruguay. Montevideo: PPR-MGAP. [Google Scholar]
  • Thomsen MS, Byers JE, Schiel DR, et al. 2014. Impacts of marine invaders on biodiversity depend on trophic position and functional similarity. Mar Ecol Prog Ser 495: 39–47. [CrossRef] [Google Scholar]
  • Zuur AF, Ieno EN, Smith GM. 2007. Analyzing ecological data. New York: Springer. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.