Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 422, 2021
Article Number 1
Number of page(s) 9
Published online 07 January 2021
  • Bernard-Verdier M, Hulme PE. 2015. Alien and native plant species play different roles in plant community structure. J Ecol 103: 143–152. [Google Scholar]
  • Bosch I, Makarewicz JC, Bonk EA, Ruiz C, Valentino M. 2009. Responses of lake macrophyte beds dominated by Eurasian watermilfoil (Myriophyllum spicatum) to best management practices in agricultural sub-watersheds: declines in biomass but not species dominance. J Gt Lakes Res 35: 99–108. [CrossRef] [Google Scholar]
  • Boylen CW, Eichler LW, Sutherland JW. 1996. Physical control of Eurasian watermilfoil in an oligotrophic lake. Hydrobiologia 340: 213–218. [Google Scholar]
  • Boylen CW, Eichler LW, Madsen JD. 1999. Loss of native aquatic plant species in a community dominated by Eurasian watermilfoil. Hydrobiologia 415: 207–211. [Google Scholar]
  • Buchan LA, Padilla DK. 2000. Predicting the likelihood of Eurasian watermilfoil presence in lakes, a macrophyte monitoring tool. Ecol Appl 10: 1442–1455. [Google Scholar]
  • CAES. 2005. Dog Pond, Goshen. [Google Scholar]
  • Capers RS. 2000. A comparison of two sampling techniques in the study of submersed macrophyte richness and abundance. Aquat Bot 68: 87–92. [Google Scholar]
  • Capers RS, Selsky R. 2005. West Side Pond- Goshen. Invasive Aquatic Plant Program. [Google Scholar]
  • Capers RS, Selsky R, Bugbee GJ, White JC. 2007. Aquatic plant community invasibility and scale-dependent patterns in native and invasive species richness. Ecology 88: 3135–3143. [CrossRef] [PubMed] [Google Scholar]
  • Eiswerth ME, Donaldson SG, Johnson WS. 2000. Potential environmental impacts and economic damages of Eurasian watermilfoil (Myriophyllum spicatum) in western Nevada and northeastern California. Weed Technol 14: 511–518. [CrossRef] [EDP Sciences] [Google Scholar]
  • Frodge JD, Thomas GL, Pauley GB. 1990. Effects of canopy formation by floating and submergent aquatic macrophytes on the water quality of two shallow Pacific Northwest lakes. Aquat Bot 38: 231–248. [Google Scholar]
  • Gergs R, Rothhaupt K-O. 2015. Invasive species as driving factors for the structure of benthic communities in Lake Constance, Germany. Hydrobiologia 746: 245–254. [Google Scholar]
  • Gross EM, Groffier H, Pestelard C, Hussner A. 2020. Ecology and Environmental Impact of Myriophyllum heterophyllum, an Aggressive Invader in European Waterways. Diversity 12: 127. [Google Scholar]
  • Grudnik ZM, Germ M. 2013. Spatial pattern of native species Myriophyllum spicatum and invasive alien species Elodea nuttallii after introduction of the latter one into the Drava River (Slovenia). Biologia (Bratisl) 68: 202–209. [Google Scholar]
  • Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. 2015. Aquatic invasive species: challenges for the future. Hydrobiologia 750: 147–170. [CrossRef] [PubMed] [Google Scholar]
  • June-Wells M, Hart B. 2012. West Side Pond- Goshen. Invasive Aquatic Plant Program. [Google Scholar]
  • Küpper H, Küpper F, Spiller M. 1996. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47: 259–266. [Google Scholar]
  • Les DH, Mehrhoff LJ. 1999. Introduction of nonindigenous aquatic vascular plants in southern New England: a historical perspective. Biol Invasions 1: 281–300. [Google Scholar]
  • Levine JM. 2000. Species diversity and biological invasions: relating local process to community pattern. Science 288: 852–854. [Google Scholar]
  • Lichvar RW. 2012. The national wetland plant list. Engineer Research and Development Center Hanover NH Cold Regions Research. [Google Scholar]
  • Lockwood JL, Cassey P, Blackburn T. 2005. The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20: 223–228. [CrossRef] [PubMed] [Google Scholar]
  • Louback-Franco N, Dainez-Filho MS, Souza DC, Thomaz SM. 2019. A native species does not prevent the colonization success of an introduced submerged macrophyte, even at low propagule pressure. Hydrobiologia 847: 1–11. [Google Scholar]
  • Louca V, Lindsay SW, Majambere S, Lucas MC. 2009. Fish community characteristics of the lower Gambia River floodplains: a study in the last major undisturbed West African river. Freshw Biol 54: 254–271. [Google Scholar]
  • Louca V, Lucas MC, Green C, Majambere S, Fillinger U, Lindsay SW. 2014. Role of fish as predators of mosquito larvae on the floodplain of the Gambia River. J Med Entomol 46: 546–556. [Google Scholar]
  • Madsen JD. 1999. Point and line intercept methods for aquatic plant management. APCRP Technical Notes Collection (TN APCRP-M1-02). US Army Eng Res Dev Cent Vicksbg MS USA. [Google Scholar]
  • Madsen JD, Wersal RM. 2017. A review of aquatic plant monitoring and assessment methods. J Aquat Plant Manag 55: 1–12. [Google Scholar]
  • Madsen JD, Sutherland JW, Bloomfield JA, Eichler LW, Boylen CW. 1991. The decline of native vegetation under dense Eurasian watermilfoil canopies. J Aquat Plant Manag 29: 94–99. [Google Scholar]
  • Madsen JD, Wersal RM, Woolf TE. 2007. A new core sampler for estimating biomass of submersed aquatic macrophytes. J Aquat Plant Manag 45: 31–34. [Google Scholar]
  • Petruzzella A, Manschot J, van Leeuwen CH, Grutters B, Bakker ES. 2018. Mechanisms of invasion resistance of aquatic plant communities. Front Plant Sci 9: 134. [CrossRef] [PubMed] [Google Scholar]
  • Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52: 273–288. [Google Scholar]
  • Qiu X, Mei X, Razlutskij V, Rudstam LG, Liu Z, Tong C, Zhang X. 2019. Effects of common carp (Cyprinus carpio) on water quality in aquatic ecosystems dominated by submerged plants: a mesocosm study. Knowl Manag Aquat Ecosyst 28. [CrossRef] [Google Scholar]
  • Roberts DW, Roberts MDW. 2016. Package ‘labdsv.’ Ordination Multivar 775. [Google Scholar]
  • Smith CS, Barko JW. 1990. Ecology of Eurasian watermilfoil. J Aquat Plant Manag 28: 55–64. [Google Scholar]
  • Stiers I, Crohain N, Josens G, Triest L. 2011. Impact of three aquatic invasive species on native plants and macroinvertebrates in temperate ponds. Biol Invasions 13: 2715–2726. [Google Scholar]
  • Strayer DL. 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw Biol 55: 152–174. [Google Scholar]
  • Tan B, He H, Gu J, Li K. 2018. Eutrophic water or fertile sediment: which is more important for the growth of invasive aquatic macrophyte Myriophyllum aquaticum? Knowl Manag Aquat Ecosyst 3. [CrossRef] [Google Scholar]
  • Thum RA, Lennon JT. 2010. Comparative ecological niche models predict the invasive spread of variable-leaf milfoil (Myriophyllum heterophyllum) and its potential impact on closely related native species. Biol Invasions 12: 133. [Google Scholar]
  • Van Donk E, Otte A. 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290. [Google Scholar]
  • Warton DI, Lyons M, Stoklosa J, Ives AR. 2016. Three points to consider when choosing a LM or GLM test for count data. Methods Ecol Evol 7: 882–890. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.