Open Access
Issue |
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
|
|
---|---|---|
Article Number | 48 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/kmae/2020040 | |
Published online | 18 December 2020 |
- Alexandre da Silva MV, Nunes Souza JV, Souza JRB, Vieira LM. 2019. Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mud snail Potamopyrgus antipodarum (Gray 1843). Freshw Biol 64: 1504–1518. [Google Scholar]
- Alonso A, Castro-Díez P. 2008. What explains the invading success of the aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca)? Hydrobiologia 614: 107–116. [Google Scholar]
- Alonso Á, Castro-Díez P. 2012. The exotic aquatic mud snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca): state of the art of a worldwide invasion. Aquat Sci 74: 375–383. [Google Scholar]
- Bandelt HJ, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. [CrossRef] [PubMed] [Google Scholar]
- Boycott AE. 1936. The habitats of fresh-water Mollusca in Britain. J Anim Ecol 5: 116–186. [Google Scholar]
- Cichy A, Żbikowska E. 2016. Atlas of Digenea developmental stages: The morphological characteristics and spread within the populations of freshwater snails from the Brodnickie Lakeland, Poland, NCU Press, Torun. [Google Scholar]
- Cichy A, Marszewska A, Parzonko J, Żbikowski J, Żbikowski E. 2017. Infection of Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) by trematodes in Poland, including the first record of aspidogastrid acquisition. J Invertebr Pathol 150: 32–34. [CrossRef] [PubMed] [Google Scholar]
- Cichy A, Marszewska A, Ciapka P, Żbikowska E. 2019. Different thermal conditions of lakes affect host–parasite systems: a case study of Viviparus contectus (Millet, 1813) and digenean trematodes. Freshw Biol 42: 417–425. [Google Scholar]
- Clusa L, Ardura A, Gower F, Miralles L, Tsartsianidou V, Zaiko A, Garcia-Vazquez E. 2016. An easy phylogenetically informative method to trace the globally invasive Potamopyrgus mud snail from river's eDNA. PLoS One 11: e0162899. [Google Scholar]
- Collado GA. 2014. Out of New Zealand: molecular identification of the highly invasive freshwater mollusk Potamopyrgus antipodarum (Gray, 1843) in South America. Zool Stud 53: 1821. [Google Scholar]
- Dorgelo J. 1987. Density fluctuations in populations (1982–1986) and biological observations of Potamopyrgus jenkinsi in two trophically differing lakes. Hydrobiol Bull 21: 95–110. [CrossRef] [Google Scholar]
- Evans NA, Whitfield PJ, Dobson AP. 1981. Parasite utilization of a host community: the distribution and occurrence of metacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of mollusc at Harting Pond, Sussex. Parasitology 83: 1–12. [Google Scholar]
- Faltýnková A, Nasincová V, Kablásková L. 2007. Larval trematodes (Digenea) of the great pond snail, Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in Central Europe: a survey of species and key to their identification. Parasite 14: 39–51. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Georgieva S, Faltýnková A, Brown R, Blasco-Costa I, Soldánová M, Sitko J, Scholz T, Kostadinova A. 2014. Echinostoma ‘revolutum’ (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasit Vectors 7: 520. [Google Scholar]
- Gérard C, Le Lannic J. 2003. Establishment of a new host–parasite association between the introduced invasive species Potamopyrgus antipodarum (Smith) (Gastropoda) and Sanguinicola sp. Plehn (Trematoda) in Europe. J Zoology 261: 213–216. [CrossRef] [Google Scholar]
- Gérard C, Miura O, Lorda J, Cribb TH, Nolan MJ, Hechinger RF. 2017. A native-range source for a persistent trematode parasite of the exotic New Zealand mud snail (Potamopyrgus antipodarum) in France. Hydrobiologia 785: 115–126. [Google Scholar]
- Haase M. 2005. Rapid and convergent evolution of parental care in hydrobiid gastropods from New Zealand. J Evol Biol 18: 1076–1086. [Google Scholar]
- Hechinger RF. 2012. Faunal survey and identification key for the trematodes (Platyhelminthes: Digenea) infecting Potamopyrgus antipodarum (Gastropoda: Hydrobiidae) as first intermediate host. Zootaxa 3418: 1–27. [Google Scholar]
- Hauswald AK, Remais JV, Xiao N, Davis GM, Lu D, Bale MJ, Wilke T. 2011. Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area. Parasit Vectors 4: 206. [Google Scholar]
- Jacobsen R, Forbes VE. 1997. Clonal variation in life-history traits and feeding rates in the gastropod, Potamopyrgus antipodarum: performance across a salinity gradient. Funct Ecol 11: 260–267. [Google Scholar]
- Johnson PTJ, Olden JD, Vander Zanden MJ. 2008. Dam invaders: impoundments facilitate biological invasions into freshwaters. Front Ecol Environ 8: 357–363. [Google Scholar]
- Kanev I. 1994. Life-cycle, delimitation and redescription of Echinostoma revolutum (Froelich, 1802) (Trematoda: Echinostomatidae). Syst Parasitol 125–144. [Google Scholar]
- Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 9: 286–298. [CrossRef] [PubMed] [Google Scholar]
- Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059–3066. [CrossRef] [PubMed] [Google Scholar]
- Kelly DW, Paterson RA, Townsend CR, Poulin R, Tompkins DM. 2009. Parasite spillback: a neglected concept in invasion ecology? Ecology 90: 2047–2056. [Google Scholar]
- Klymus KE, Marshall NT, Stepien CA. 2017. Environmental DNA (eDNA) metabarcoding assays to detect invasive invertebrate species in the Great Lakes. PLOS One 12: e0177643. [Google Scholar]
- Larson MD, Krist AC. 2019. Trematode prevalence and an invasive freshwater snail: fewer infections and parasites likely contribute to the success of an invasive snail. Biol Invasions 48: 275. [Google Scholar]
- Larson MD, Dewey JC, Krist AC. 2020. Invasive Potamopyrgus antipodarum (New Zealand mud snails) and native snails differ in sensitivity to specific electrical conductivity and cations. Aquat Ecol 54: 103–117. [Google Scholar]
- Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. [CrossRef] [PubMed] [Google Scholar]
- Marszewska A, Cichy A, Bulantová J, Horák P, Żbikowska E. 2018a. Potamopyrgus antipodarum as a potential defender against swimmer's itch in European recreational water bodies-experimental study. PeerJ 6: e5045. [CrossRef] [PubMed] [Google Scholar]
- Marszewska A, Strzała T, Cichy A, Dąbrowska GB, Żbikowska E. 2018b. Agents of swimmer's itch-dangerous minority in the Digenea invasion of Lymnaeidae in water bodies and the first report of Trichobilharzia regenti in Poland. Parasitol Res 117: 3695–3704. [Google Scholar]
- Morgan-Richards M, Trewick SA, Stringer IAN. 2010. Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Mol Ecol 19, 1227–1238. [CrossRef] [PubMed] [Google Scholar]
- Nentwig W, Bacher S, Kumschick S, Pyšek P, Vilà M. 2018. More than “100 worst” alien species in Europe. Biol Invasions 20: 1611–1621. [Google Scholar]
- Piechocki A, Wawrzyniak-Wydrowska B. 2016. Guide to freshwater and marine Mollusca of Poland. Poznan: Bogucki, 280 p. [Google Scholar]
- Saijuntha W, Sithithaworn P, Andrews RH. 2010. Genetic differentiation of Echinostoma revolutum and Hypodereaum conoideum from domestic ducks in Thailand by multilocus enzyme electrophoresis. J Helminthol 84: 143–148. [CrossRef] [PubMed] [Google Scholar]
- Schreiber ESG, Glaister A, Quinn GP, Lake PS. 1998. Life history and population dynamics of the exotic snail Potamopyrgus antipodarum (Prosobranchia: Hydrobiidae) in Lake Purrumbete, Victoria, Australia. Mar Freshwater Res 49: 73. [CrossRef] [Google Scholar]
- Städler T, Frye M, Neiman M, Lively CM. 2005. Mitochondrial haplotypes and the New Zealand origin of clonal European Potamopyrgus, an invasive aquatic snail. Mol Ecol 14: 2465–2473. [CrossRef] [PubMed] [Google Scholar]
- Tantrawatpan C, Saijuntha W, Bunchom N, Suksavate W, Pilap W, Walalite T, Agatsuma T, Tawong W, Sithithaworn P, Andrews RH, Petney TN. 2020. Genetic structure and geographical variation of Bithynia siamensis goniomphalos sensu lato (Gastropoda: Bithyniidae), the snail intermediate host of Opisthorchis viverrini sensu lato (Digenea: Opisthorchiidae) in the Lower Mekong Basin revealed by mitochondrial DNA sequences. Int J Parasitol 50: 55–62. [Google Scholar]
- Urbański J. 1935. Dwa ciekawe gatunki ślimaków w Wielkopolsce. Wydawnictwa Okręgowej Komisji Ochrony Przyrody w Poznaniu 5: 108–114. [Google Scholar]
- Weetman D, Hauser L, Carvalho GR. 2006. Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum . Genetica 127: 285–293. [CrossRef] [PubMed] [Google Scholar]
- Żbikowski J, Żbikowska E. 2009. Invaders of an invader-trematodes in Potamopyrgus antipodarum in Poland. J Invertebr Pathol 101: 67–70. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.