Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Article Number 38
Number of page(s) 12
DOI https://doi.org/10.1051/kmae/2020030
Published online 01 September 2020
  • Amanieu M, Baleux B, Guelorget O, Michel P. 1975. Étude biologique et hydrologique d'une crise dystrophique (Malaïgue) dans l'étang du Prévost à Palavas (Hérault). Vie Milieu 25: 175–204. [Google Scholar]
  • APAT, IRSA-CNR. 2003. Metodi Analitici per le Acque. ISBN 88-448-0083-7, 1: 1153. [Google Scholar]
  • Atkinson MJ, Smith SV. 1983. C:N:P ratios of benthic marine plants. Limnol Oceanogr 28: 568–574. [Google Scholar]
  • Bischof K, Rautenberger R, Brey L, Pérez-Lloréns JL. 2006. Physiological acclimation to gradients of solar irradiance within mats of the filamentous green macroalga Chaetomorpha linum from southern Spain. Mar Biol Progr Ser 306: 165–175. [CrossRef] [Google Scholar]
  • Bombelli V, Lenzi M. 1996. Italy-the Orbetello lagoon and the Tuscan coast. In: Schhramm, W., Nienhuis, P.N. (Eds.), Marine Benthic vegetation. Ecological Studies, vol. 123. Berlin Heidelberg: Springer-Verlag, pp. 331–337. [CrossRef] [Google Scholar]
  • Boss CB, Fredeen KJ. 2004. Concepts, Instrumentation and Techniques in Inductively Coupled Plasma Optical. Emission Spectrometry. 3rd Edition. 120pp. [Google Scholar]
  • Cohen RA, Fong P. 2004. Physiological responses of a bloom-forming green macroalga to short-term change ib salinity, nutrient, and light help explain its ecological success. Estuaries 27: 209–216. [CrossRef] [Google Scholar]
  • Corzo A, Van Bergeijk SA, García-Robledo E. 2009. Effects of green macroalgal blooms on intertidal sediments: net metabolism and carbon and nitrogen contents. Mar Ecol Progr Ser 380: 81–93. [CrossRef] [Google Scholar]
  • DICEA. 2018. Research activity for the mitigation of eutrophic processes in the Orbetello Lagoon: Study on the estimation of the nutrient balance and on the numerical model of the hydrodynamic circulation. Final technical-scientific report. Department of Civil and Environmental Engineering (DICEA), University of Florence. Tuscany region. 264 pp. [Google Scholar]
  • Duck RW, Figueiredo da Silva J. 2012. Coastal lagoons and their evolution: a hydromorphological perspective. Estuar Coast Shelf Sci 110: 2–14. [Google Scholar]
  • Egli H. 2008. Kjeldahl Guide. Flawil Switzerland: Büchi Labortechnik AG. [Google Scholar]
  • Freile-Pelegrín Y, Chávez-Quintal C, Caamal-Fuentes E, Vázquez-Delfín E, Madera-Santana T, Robledo D. 2020. Valorization of the filamentous seaweed Chaetomorpha gracilis (Cladophoraceae, Chlorophyta) from an IMTA system. J Appl Phycol https://doi.org/10.1007/s10811-020-02066-8. [PubMed] [Google Scholar]
  • Gambaro A, Cescon P, Turetta C, Piazza R, Moret I. 2007. Studio dei composti organici solforati volatili di origine marina e loro relazione con i cambiamenti climatici. In 2 − Clima e cambiamenti climatici le attività di ricerca del CNR, a cura di B. Carli, G. Cavarretta, M. Colacino, S. Fuzzi, Published pp. https://issuu.com/cnr-dta. CNR Dipartimento Scienze del Sistema Terra e Tecnologie per l'Ambiente, 81–84 pp. [Google Scholar]
  • Gao L, Zhang L, Hou J, Wei Q, Fu F. 2013. Decomposition of macroalgal blooms influences phosphorus release from the sediments and implications for coastal restoration in Swan Lake, Shandong, China. Ecol Eng 60: 19–28. [CrossRef] [Google Scholar]
  • García-Robledo E, Corzo A, Garcia de Lomas J, Van Bergeijk SA. 2008. Biogeochemical effects of macroalgae decomposition on intertidal microbenthos: a microcosm experiment. Mar Ecol Progr Ser 356: 139–151. [CrossRef] [Google Scholar]
  • Hanisak MD. 1993. Nitrogen release from decomposing macroalgaes: species and temperature effects. J Appl Phycol 5: 175–181. [Google Scholar]
  • Hargrave BT, Holmer M, Newcombe CP. 2008. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar Pollut Bull 56: 810–824. [Google Scholar]
  • Hauxwell J, Valiela I. 2004. Effects of nutrient loading on shallow seagrass dominated coastal systems: patterns and processes. In: Nielsen, S.L., Banta, G.T., Pedersen, M.F. (Eds.), Estuarine Nutrient Cycling: The Influence of Primary Producers. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 59–92 . [CrossRef] [Google Scholar]
  • Hawkesford MJ. 2008. Uptake, distribution and subcellular transport of sulfate. In: Hell R, Dahl C, Knaff DB, Leustek T (Eds.), Supfur metabolism in phototrophic organism. Dordrecht: Springer, pp 15–30 . [CrossRef] [Google Scholar]
  • Holmer M. 1999. The effect of oxygen depletion on anaerobic organic matter degradation in marine sediments. Estuar Coast Shelf Sci 48: 383–390. [Google Scholar]
  • Holmer M, Duarte CM, Boschker HTS, Barrón C. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol 36: 227–237. [Google Scholar]
  • Holmer M, Nielsen RM. 2007. Effects of filamentous algal mats on sulfide invasion in eelgrass (Zostera marina). J Exp Mar Biol Ecol 353: 245–252. [Google Scholar]
  • Jaulneau V, Lafitte C, Jacquet C, Fournier S, Salamagne S, Briand X, Esquerŕe-Tugay M-T., Dumas B. 2010. Ulvan, a Sulfated Polysaccharide from Green Algae, Activates Plant Immunity through the Jasmonic Acid Signaling Pathway. J Biomed Biotechnol 2010: Article ID 525291, 11 pages. [Google Scholar]
  • Krause-Jensen D, Mc Glathery K, Rysgaard S, Christensen PB. 1996. Production within dense mats of the filamentous macroalga Chaetomorpha linum in relation to light and nutrient avalaibility. Mar Ecol Progr Ser 134: 207–216. [CrossRef] [Google Scholar]
  • Lavery PS, Lukatelich RJ, McComb AJ. 1991. Changes in the biomass and species composition of macroalgae in a eutrophic estuary. Estuar Coast Shelf Sci 33: 1–22. [Google Scholar]
  • Lenzi M. 2019. Hunters of sulfur-blooms. Eutrophic non-tidal lagoon environments and dystrophic mechanics. 116 pp. Ed. Pandion, Roma. http://pandion-edizioni.blogspot.it and www.pandion.it. [Google Scholar]
  • Lenzi M, Finoia MG, Gennaro P, Mercatali I, Persia E, Solari J, Porrello S. 2013b. Assessment of resuspended matter and redistribution of macronutrient elements produced by boat disturbance in a eutrophic lagoon. J Environ Manag 123: 8–13 . [CrossRef] [Google Scholar]
  • Lenzi M, Gennaro P, Mercatali I, Persia E, Solari D, Porrello S. 2013a. Physico-chemical and nutrient variable stratifications in the water 4 column and in macroalgal thalli as a result of high biomass mats 5 in a non-tidal shallow-water lagoon. Mar Pollut Bull 75: 98–104. [Google Scholar]
  • Lenzi M, Leporatti Persiano M, Gennaro P, Rubegni F. 2017. Artificial top layer sediment resuspension to counteract Chaetomorpha linum (Muller) Kutz. blooms in a eutrophic lagoon. Three years full-scale experience. J Aquacult Mar Biol 5: 00114. [Google Scholar]
  • Lenzi M, Palmieri R, Porrello S. 2003. Restoration of the eutrophic Orbetello lagoon (Tyrrhenian Sea, Italy): water quality management. Mar Pollut Bull 46: 1540–1548. [Google Scholar]
  • Lenzi M, Renzi M. 2011. Effects of artificial disturbance on quantity and biochemical composition of organic matter in sediments of a coastal lagoon. Knowl Manag Aquat Ecosyst 402: 08. [CrossRef] [Google Scholar]
  • Lenzi M, Renzi M, Nesti U, Gennaro P, Persia E, Porrello S. 2011. Vegetation cyclic shift in eutrophic lagoon. Assessment of dystrophic risk indices based on standing crop evaluation. Estuar Coast Shelf Sci doi:10.1016/j.ecss.2011.10.006. [Google Scholar]
  • Lenzi M, Salvaterra G, Gennaro P, Mercatali I, Persia M, Porrello S, Sorce C. 2015. A new approach to macroalgal bloom control in eutrophic, shallow water, coastal areas. J Environ Manag 150: 456–465. [CrossRef] [Google Scholar]
  • Li Q, Luo J, Wang C, Tai W, Wang H, Zhang X, Liu K, Jia Y, Lyv X, Wang L, He H. 2018. Ulvan extracted from green seaweeds as new natural additives in diets for laying hens. J Appl Phycol 30: 2017–2027. [Google Scholar]
  • Liu D, Keesing JK, Xing Q, Shi P. 2009. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull 58: 888–895. [Google Scholar]
  • Loh PS. 2005. An assessment of the contribution of terrestrial organic matter to total organic matter in sediments in Scottish sea lochs, Ph.D. thesis, UHI Millenium Institute, 350 pp. [Google Scholar]
  • Marty D, Esnault G, Caumette P, Ranaivoson-Rambeloarisoa E, Bertrand JC. 1990. Denitrification, sulfato-reduction et methanogenese dans les sediments superficiels d'un étang saumatre Méditerranéen. Oceanolog Acta 13: 199–210. [Google Scholar]
  • McGlathery KJ, Anderson IC, Tyler AC. 2001. Magnitude and variability of benthic and pelagic metabolism in temperate coastal lagoon. Mar Ecol Progr Ser 216: 1–15. [CrossRef] [Google Scholar]
  • McGlathery KJ, Krause-Jensen D, Rysgaard S, Christensen PB. 1997. Patterns of ammonium uptake within dense mats of the filamentous macroalgae Chaetomorpha linum . Aquat Bot 59: 99–115. [Google Scholar]
  • Menéndez M, Herrera J, Comín FA. 2002. Effect of nitrogen and phosphorus supply on growth, chlorophyll content and tissue composition of the macroalga Chaetomorpha linum (O.F. Müll.) Kütz. in a Mediterranean coastal lagoon. Sci Mar 66: 355–364. [CrossRef] [Google Scholar]
  • Morand P, Briand X. 1996. Excessive growth of macroalgae: a symptom of environmental disturbance. Bot Mar 39: 491–516. [CrossRef] [Google Scholar]
  • Nedergaard RI, Risgaard-Petersen N, Finster K. 2002. The importance of sulfate reduction associated with Ulva lactuca thalli during decomposition: a mesocosm experiment. J Exp Mar Biol Ecol 275: 15–29. [Google Scholar]
  • Peckol P, Demeo-Anderson B, Rivers J, Valiela I, Maldonado M, Weiner J, Yates J. 1994. Growth, nutrient uptake capacities and tissue costituents of the macroalgae Gracilaria tikvahiae and Cladophora vagabunda, related to site-specific nitrogen loading rates. Mar Biol 121: 175–185. [Google Scholar]
  • Peckol P, Rivers JS. 1995a. Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilariopsis tikvahiae (McLachlan) to environmental disturbances associated with eutrophication. J Exp Mar Biol Ecol 190: 1–16. [Google Scholar]
  • Peckol P, Rivers JS. 1995b. Competitive interactions between the opportunistic macroalgae Cladophora vagabunda (Chlorophyta) and Gracilariopsis tikvahiae (Rodophyta) under eutrophic conditions. J Phycol 31: 229–232. [Google Scholar]
  • Pierre G, Sopena V, Juin C, Mastouri A, Graber M, Maugard T. 2011. Antibacterial activity of a sulfated galactan extracted from the marine alga Chaetomorpha aerea Against Staphylococcus aureus . Biotechnol Bioprocess Eng 16: 937–945. [Google Scholar]
  • Qi HM, Sun YL. 2015. Antioxidant activity of high sulfate content derivative of ulvan in hyperlipidemic rats. Int J Biol Macromol 76: 326–329. [CrossRef] [PubMed] [Google Scholar]
  • Raffaelli DG, Raven JA, Poole LJ. 1998. Ecological impact of green macroalgal blooms. Oceanogr Mar Biol 36: 97–125. [Google Scholar]
  • Rosaline XD, Sakthivelkumar S, Chitra S, Janarthanan S. 2017. Antibacterial activity of the seaweeds Chaetomorpha linum and Padina gymnospora on human bacterial pathogens. J Environ Biotechnol Res 6: 43–52. [Google Scholar]
  • Schindelin J, Arganda-Carreras I, Frise E et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682. [CrossRef] [PubMed] [Google Scholar]
  • Sfriso A, Marcomini A, Pavoni B. 1987. Relationships between macroalgal biomass and nutrient concentrations in a hypertrophic area of the Venice lagoon. Mar Environ Resour 22: 297–312. [CrossRef] [Google Scholar]
  • Smetacek V, Zingone A. 2013. Green and golden seaweed tides on the rise. Nature 504: 84–88. [Google Scholar]
  • Soltner D. 1988. Le bases de la production vegetale. Tome 1: Le sol. 16 editione. Collection Sciences et Tecniques Agricoles. Angers: Sainte Gemmes Sur Loire. [Google Scholar]
  • Sorce C, Persiano Leporatti M, Lenzi M. 2017. Growth and physiological features of Chaetomorpha linum (Müller) Kütz. in high density mats. Mar. Pollut Bull http://dx.doi.org/10.1016/j.marpolbul.2017.10.071. [Google Scholar]
  • Underwood AJ. 1997. Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge, UK: Cambridge University Press, pp. 410–411. [Google Scholar]
  • van Bergeijk SA. 2000. Production of dimethylsulfonionpropionate and dimethylsulfide in intertidal sediment ecosystems. Thesis University of Amsterdam. ISBN: 90-5776-054-1. [Google Scholar]
  • Venkata Rao E, Sri Ramana K. 1991. Structural studies of a polysaccharide isolated from the green seaweed Chaetomorpha anteninna . Carbohydr Res 217: 163–170. [CrossRef] [PubMed] [Google Scholar]
  • Viaroli P, Bartoli M, Bondavalli C, Christian RR, Giordani G, Naldi M. 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphides, and nutrients in shallow eutrophic environments. Hydrobiologia 239: 105–119. [Google Scholar]
  • Wheeler PA, Bjornsater BR. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus and N:P for five macroalgal species common to the Pacific Northwest coast. J Phycol 28: 1–6. [Google Scholar]
  • Young CS, Gobler CJ. 2016. Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS ONE 11: e0155152. [CrossRef] [PubMed] [Google Scholar]
  • Zou R, Wu Z, Zhao L, Elser JJ, Yu Y, Chen Y, Liu Y. 2020. Seasonal algal blooms support sediment release of phosphorus via positive feedback in a eutrophic lake: Insights from a nutrient flux tracking modeling. Ecol Model 416. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.