Issue
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Topical Issue on Fish Ecology
Article Number 25
Number of page(s) 13
DOI https://doi.org/10.1051/kmae/2020016
Published online 05 June 2020
  • Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acid Res 25: 4692–4693. [CrossRef] [PubMed] [Google Scholar]
  • Araki H, Cooper B, Blouin MS. 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318: 100–103. [Google Scholar]
  • Bandelt H, Forster P, Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. [CrossRef] [PubMed] [Google Scholar]
  • Barluenga M, Sanetra M, Meyer A. 2006. Genetic admixture of burbot (Teleostei: Lota lota) in Lake Constance from two European glacial refugia. Mol Ecol 15: 3583–3600. [CrossRef] [PubMed] [Google Scholar]
  • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57: 289–300. [Google Scholar]
  • Brodersen J, Seehausen O. 2014. Why evolutionary biologists should get seriously involved in ecological monitoring and applied biodiversity assessment programs. Evol Appl 7: 968–983. [CrossRef] [PubMed] [Google Scholar]
  • Cornuet JM, Luikart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014. [PubMed] [Google Scholar]
  • Costedoat C, Pech N, Chappaz R, Gilles A. 2007. Novelties in hybrid zones: Crossroads between population genomic and ecological approaches. PLoS ONE 4: e357. [Google Scholar]
  • Christie MR, Marine ML, French RA, Blouin MS. 2012. Genetic adaptation to captivity can occur in a single generation. PNAS 109: 238–242. [CrossRef] [Google Scholar]
  • Dubut V, Fouquet A, Voisin A, Costedoat C, Chappaz R, Gilles E. 2012. From late miocene to holocene: Processes of differentiation within the telestes genus (Actinopterygii: Cyprinidae). PLoS ONE 7: e34423–03. [Google Scholar]
  • Drauch AM, Fisher BE, Latch EK, Fike JA, Rhodes OE. 2007. Evaluation of a remnant lake sturgeon population's utility as a source for reintroductions in the Ohio River system. Conserv Genet 9: 1195–1209. [Google Scholar]
  • Duerregger A, Pander J, Palt M, Mueller M, Nagel C, Geist J. 2018. The importance of stream interstitial conditions for the early-life-stage development of the European nase (Chrondrostoma nasus L.). Ecol Freshw Fish 00: 1–13. [Google Scholar]
  • Dußling U, Berg R. 2001. Fische in Baden-Württemberg. Ministerium für Ernährung und Ländlichen Raum Baden-Württemberg. Stuttgart, Germany. 176 p. [Google Scholar]
  • Earl DA, Von Holdt BM. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4: 359–361. [CrossRef] [Google Scholar]
  • Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–1620. [CrossRef] [PubMed] [Google Scholar]
  • Excoffier L, Smouse PE, Quattro JM. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491. [PubMed] [Google Scholar]
  • Feiner ZS, DeWoody JA, Breck JE, Höök TO. 2017. Influences of multilocus heterozygosity on size during early life. Ecol Evol 7: 2142–2154. [Google Scholar]
  • Flore L, Keckeis H. 1998. The effect of water current on foraging behaviour of the rheophilic cyprinid Chondrostoma nasus (L.) during ontogeny: evidence of a trade-off between energetic gain and swimming costs. Regul Rivers: Res Manage 14: 141–154. [CrossRef] [Google Scholar]
  • Forsman A. 2014. Effects of genotypic and phenotypic variation on establishment are important for conservation, invasion, and infection biology. Proc Natl Acad Sci 111: 302–307. [CrossRef] [Google Scholar]
  • Frankham R. 2005. Stress and adaptation in conservation genetics. J Evol Biol 18: 750–755. [Google Scholar]
  • Freyhof J. 1997. Remarks on the status of Chondrostoma nasus in the River Rhine. Folia Zool 46 (Suppl. 1): 61–66. [Google Scholar]
  • Freyhof J, Brooks E. 2011. European Red List of Freshwater Fishes. Luxembourg: Publications Office of the European Union. [Google Scholar]
  • Fu YX. 1996. New statistical tests of neutrality for DNA samples from a population. Genetics 143: 557–570. [CrossRef] [PubMed] [Google Scholar]
  • García-Navas V, Cáliz-Campal C, Ferrer ES, Sanz JJ, Ortego J. 2014. Heterozygosity at a single locus explains a large proportion of variation in two fitness-related traits in great tits: a general or a local effect? J Evol Biol 27: 2807–2819. [Google Scholar]
  • Hauer C, Unfer G, Schmutz S, Habersack H. 2007. The importance of morphodynamic processes at riffles used as spawning grounds during the incubation time of nase (Chondrostoma nasus). Hydrobiologia 579: 15–27. [Google Scholar]
  • Hmuklv, Hessen-Forst Fena (Eds.) 2014. Atlas der Fische Hessens − Verbreitung der Rundmäuler, Fische, Krebse und Muscheln. In: FENA Wissen Ed. 2, Gießen, Wiesbaden, Germany. [Google Scholar]
  • Hübner D, Fricke R. 2011. Pilotprojekt Aalmonitoring im Mittellauf der Lahn − Aufnahme von Aalbestand und Habitatbedingungen. Studie im Auftrag des Regierungspräsidiums Gießen − obere Fischereibehörde. 78 p. [Google Scholar]
  • Hübner D, Fricke R. 2012. Pilotprojekt Aalmonitoring im Mittel- und Unterlauf der Lahn − Aufnahme von Aalbestand und Habitatbedingungen. Studie im Auftrag der Struktur und Genehmigungsdirektion Nord − obere Fischereibehörde. 73 p. [Google Scholar]
  • Hübner H, Fricke R. 2014. Pilotprojekt Aalmonitoring. Optimiertes Aal-Besatzmanagement in der Lahn. Maßnahmen zur Steigerung des Besatzerfolges. Studie im Auftrag des Landes Hessen vertreten durch das Regierungspräsidium Gießen − obere Fischreibehörde. 57 p. [Google Scholar]
  • Hübner D, Cramer C, Schmidt T. 2016. Wiederansiedlung der Nase (Chondrostoma nasus) im Oberlauf der Lahn. Studie im Auftrag des Regierungspräsidiums Gießen − obere Fischereibehörde. 46 p. [Google Scholar]
  • Hübner D, Fricke R, Graf T. 2017. Maßnahmen zur Stützung der Bestände der kieslaichenden Fischarten Äsche und Nasen in der Oberen Lahn. EU-LIFE14 IPE/DE/022_C7B/D4.1. Zwischenbericht. Studie im Auftrag des Landes Hessen, Regierungspräsidium Gießen. 59 p. [Google Scholar]
  • Hudson AG, Vonlanthen P, Seehausen O. 2014. Population structure, inbreeding and local adaptation within an endangered riverine specialist: the nase (Chondrostoma nasus). Conserv Genet 15: 933–951. [Google Scholar]
  • Jost L. 2008. GST and its relatives do not measure differentiation. Mol Ecol 17: 4015–4026. [CrossRef] [PubMed] [Google Scholar]
  • Jost L. 2010. The relation between evenness and diversity. Diversity 2: 207–232. [Google Scholar]
  • Kalinowski ST. 2004. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conserv Genet 5: 539–543. [Google Scholar]
  • Kalinowski ST. 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5: 187–189. [Google Scholar]
  • Kimura M, Ohta T. 1978. Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75: 2868–2872. [CrossRef] [Google Scholar]
  • Kitada S, Nakajima K, Hamasaki K, Shishidou H, Waples RS, Kishino H. 2019. Rigorous monitoring of a large-scale marine stock enhancement program demonstrates the need for comprehensive management of fisheries and nursery habitat. Sci Rep 9: 5290. [CrossRef] [PubMed] [Google Scholar]
  • Leigh JW, Bryant D. 2015. PopART: Full-feature software for haplotype network construction. Methods Ecol Evol 6: 1110–1116. [Google Scholar]
  • Luikart G, Allendorf FW, Cornuet JM, Sherwin WB. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89: 238–247. [Google Scholar]
  • Luikart G, Cornuet JM. 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12: 228–237. [Google Scholar]
  • Lundmark C, Sandström A, Andersson C, Laikre L. 2019. Monitoring the effects of knowledge communication on conservation managers' perception of genetic biodiversity − A case study from the Baltic Sea. Mar Policy 99: 223–229. [Google Scholar]
  • Mäkinen HS, Merilä J. 2008. Mitochondrial DNA phylogeography of the three-spined stickleback (Gasterosteus aculeatus) in Europe − evidence for multiple glacial refugia. Mol Phylogenet Evol 46: 167–182. [Google Scholar]
  • Marandel F, Lorance P, Berthelé O, Trenkel VM, Waples RS, Lamy JB. 2019. Estimating effective population size of large marine populations, is it feasible? Fish Fisher 20: 189–198. [CrossRef] [Google Scholar]
  • Mesquita N, Cunha C, Hänfling B, Carvalho GR, Zé-Zé L, Tenreiro R, Coelho MM. 2003. Isolation and characterization of polymorphic microsatellite loci in the endangered Portuguese freshwater fish Squalius aradensis (Cyprinidae). Mol Ecol Notes 3: 572–574. [Google Scholar]
  • Muenzel FM, Santera M, Salzburger W, Meyer A. 2007. Microsatellites from the vairone Leuciscus souffia (pisces: Cyprinidae) and their application to closely related species. Mol Ecol Notes 7: 1048–1050. [Google Scholar]
  • Nagel C, Pander J, Mueller M, Geist J. 2019. Substrate composition determines emergence success and development of European nase larvae (Chondrostoma nasus L.). Ecol Freshw Fish 00: 1–11. [Google Scholar]
  • Naish KA, Seamons TR, Dauer MB, Hauser L, Quinn TP. 2013. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol Ecol 22: 1295–1309. [CrossRef] [PubMed] [Google Scholar]
  • Ovidio M, Hanzen C, Gennotte V, Michaux J, Benitez J-P, Dierckx A. 2016. Is adult translocation a credible way to accelerate the recolonization process of Chondrostoma nasus in a rehabilitated river? Cybium 40: 43–49. [Google Scholar]
  • Paetkau D, Slade R, Burden M, Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13: 55–65. [CrossRef] [PubMed] [Google Scholar]
  • Paz-Vinas I, Comte L, Chevalier M, Dubut V, Veyssiere C, Grenouillet G, Loot G, Blanchet S. 2013. Combining genetic and demographic data for prioritizing conservation actions: insights from a threatened fish species. Ecol Evol 3: 2696–2710. [CrossRef] [PubMed] [Google Scholar]
  • Paz-Vinas I, Quéméré E, Chikhi L, Loot G, Blanchet S. 2013. The demographic history of populations experiencing asymmetric gene flow: combining simulated and empirical data. Mol Ecol 22: 3279–3291. [CrossRef] [PubMed] [Google Scholar]
  • Peakall R, Smouse PE. 2012. GENALEX 6.5: Genetic analysis in excel. Population genetic software for teaching and research − An update. Bioinformatics 28: 2537–2539. [CrossRef] [PubMed] [Google Scholar]
  • Peňáz M. 1996. Chondrostoma nasus − its reproduction strategy and possible reasons for a widely observed population decline − a review. In: Kirchhofer A, Hefti D. (eds.). Conservation of Endangered Freshwater Fish in Europe. ALS Advances in Life Sciences. Birkhäuser Basel. [CrossRef] [Google Scholar]
  • Perea S, Böhme M, Zupančič P, Freyhof J, Šanda R, Özuluğ M, Abdoli A, Doadrio I. 2010. Phylogenetic relationships and biogeographical patterns in circum-mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol 10: 265. [CrossRef] [PubMed] [Google Scholar]
  • Petit RJ, El Mousadik A, Pons O. 1998. Identifying populations for conservation on the bases of genetic markers. Conserv Biol 12: 844–855. [Google Scholar]
  • Piccolo JJ, Unfer G, Lobón-Cerviá J. 2018. Why conserve native brown trout? In: Lobón-Cerviá J, Sanz N. (eds.) Brown Trout: Biology, Ecology and Management, First Edition, John Wiley & Sons Ltd. [Google Scholar]
  • Piry S, Luikart G, Cornuet JM. 1999. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90: 502–503. [Google Scholar]
  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A. 2004. GENECLASS2: A Software for genetic assignment and first-generation migrant detection. J Hered 95: 536–539. [Google Scholar]
  • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959. [Google Scholar]
  • Ramos-Onsins SE, Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19: 2092–2100. [CrossRef] [PubMed] [Google Scholar]
  • Raymond M, Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86: 248–249. [CrossRef] [Google Scholar]
  • Schindler DE, Hilborn R, Chasco B, Boatright CP, Quinn TP, Rogers LA, Webster MS. 2010. Population diversity and the portfolio effect in an exploited species. Nature 465: 609–612. [CrossRef] [PubMed] [Google Scholar]
  • Schneider J. 2011. Review of reintroduction of Atlantic salmon (Salmo salar) in tributaries of the Rhine River in the German Federal States of Rhineland-Palatinate and Hesse. J Appl Ichthyol 27: 24–32. [Google Scholar]
  • Schwevers U, Adam A. 1997. Wiederansiedlung der Nase in der Lahn. Im Auftrag der IG-Lahn. 30 p. [Google Scholar]
  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595. [PubMed] [Google Scholar]
  • Van Oosterhoudt C, Hutchinson WF, Wills DPM, Shipley P. 2004. Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. [Google Scholar]
  • Vaughn CC. 2010. Biodiversity losses and ecosystem function in freshwaters: Emerging conclusions and research directions. BioScience 60: 25–35. [Google Scholar]
  • Villéger S, Blanchet S, Beauchard O, Oberdorff T, Brosse S. 2011. Homogenization patterns of the world's freshwater fish faunas. PNAS 108: 18003–18008. [CrossRef] [Google Scholar]
  • Vonlanthen P, Hudson A, Seehausen O. 2011. Genetische Differenzierung und lokale Anpassung der Nasenpopulationen in der Schweiz. Im Auftrag des Bundesamt für Umwelt (BAFU), Kastanienbaum, Switzerland. 42 p. [Google Scholar]
  • Vyskocilová M, Simková A, Martin J-F. 2007. Isolation and characterization of microsatellites in Leuciscus cephalus (Cypriniformes, Cyprinidae) and cross-species amplification within the family Cyprinidae. Mol Ecol Notes 7: 1150–1154. [Google Scholar]
  • Waples RS, Do C. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3: 244–262. [CrossRef] [PubMed] [Google Scholar]
  • Waples RS, Peel D, Mecbeth GM, Tillett BJ, Ovenden JR. 2014. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res 14: 209–214. [CrossRef] [Google Scholar]
  • Wetjen M, Cortey M, Vera M, Schmidt T, Schulz R, García-Marín J-L. 2017. Occurrence of length polymorphism and heteroplasmy in brown trout. Gene Reports 6: 1–7. [Google Scholar]
  • Wetjen M, Schmidt T, Schrimpf A, Schulz R. 2020. Genetic diversity and population structure of burbot Lota lota in Germany: Implications for conservation and management. Fish Manag Ecol 27: 170–184. [CrossRef] [Google Scholar]
  • Winter HV, Fredrich F. 2003. Migratory behaviour of ide: a comparison between the lowland rivers Elbe, Germany, and Vecht, the Netherlands. J Fish Biol 63: 871–880. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.