Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Topical Issue on Fish Ecology
Article Number 15
Number of page(s) 15
Published online 03 April 2020
  • Adams NS, Johnson GE, Rondorf DW, Anglea SM, Wik TO. 2001. Biological Evaluation of the Behavioral Guidance Structure at Lower Granite Dam on the Snake River, Washington in 1998. In: Coutant C, ed. Behavioral Technologies for Fish Guidance, American Fisheries Society Symposium, 26, Bethesda MD, 145–160. [Google Scholar]
  • Bau F, Chanseau M, Larinier M. 2002. Evaluation de l'efficacité d'une drome de dévalaison « Fishfree » pour smolts de saumon atlantique au niveau de l'aménagement hydroélectrique de VIZENS (Gave de Pau), Rapport GHAAPPE RA02.02, 40 p. [Google Scholar]
  • Calles O, Rivinoja P, Greenberg L. 2013. A Historical Perspective on Downstream Passage at Hydroelectric Plants in Swedish Rivers. In Maddock I, Harby A, Kemp P, Wood P, eds. Ecohydraulics: An Integrated Approach. John Wiley & Sons, Ltd. pp. 309–321. [CrossRef] [Google Scholar]
  • Cefas A. 2012. Assessment of Damage to Smolts Caused by Archimedes Screw Hydropower Turbines. Lowestoft: T.R.I. Potter, P. Davison & A. Moore. [Google Scholar]
  • Clay CH. 1995. Design of fishways and other fish facilities. Second Edition. Boca Raton, FL: Lewis Publishers, 248 p. [Google Scholar]
  • Courret D, Larinier M. 2008. Guide pour la conception de prises d'eau “ichtyocompatibles” pour les petites centrales hydroélectriques. Rapport GHAAPPE RA.08.04., Agence de l'environnement et de la maîtrise de l'énergie, 72 p. [Google Scholar]
  • Hanson BN. 1999. Effectiveness of two surface bypass facilities on the Connecticut river to pass emigrating Atlantic Salmon smolts. In: Odeh M. ed. Innovations in fish passage technologies. Bethesda, MD: American Fisheries Society, pp. 43–60. [Google Scholar]
  • Hosmer DW, Lemeshow S. 2000. Applied Logistic Regression. New York: John Wiley & Sons, 375 p. [Google Scholar]
  • Johnson GE, Dauble DD. 2006. Surface flow outlets to protect juvenile salmonids passing through hydropower dams. Rev Fish Sci 14: 213–244. [CrossRef] [Google Scholar]
  • Lagarrigue T. 2013. Tests for evaluating damage to fish species migrating downstream during their transit through the VLH hydraulic turbine installed on the Tarn River in Millau. Report ECOGEA, Toulouse, 23 p. [Google Scholar]
  • Lagarrigue T, Frey A. 2010. Test for evaluating the injuries suffered by downstream-migrating eels in their transit through the new spherical discharge ring VLH turbogenerator unit installed on the Moselle river in Frouard. Report ECOGEA, Toulouse, 26 p. [Google Scholar]
  • Larinier M. 2008. Fish passage experience at small-scale hydro-electric powerplants in France. Hydrobiologia 609: 97–108. [Google Scholar]
  • Larinier M, Dartiguelongue J. 1989. La circulation des poissons migrateurs : le transit à travers les turbines des installations hydroélectriques. Bull Fr Pêche et Piscic 312–313: 90 p. [Google Scholar]
  • Larinier M, Travade F. 1999. The development and evaluation of downstream bypasses for juvenile Salmonids at small scale hydroelectric plants in France. In: Odeh M. ed. Innovations in fish passage technologies. Bethesda, MD: American Fisheries Society, 25–42. [Google Scholar]
  • Larinier M, Travade F. 2002. Downstream migration: problems and facilities. Bull Fr Pêche Piscic 364 Suppl.: 181–207. [CrossRef] [Google Scholar]
  • Limburg KE, Waldman JR. 2009. Dramatic declines in North Atlantic diadromous fishes. BioScience 59: 955–965. [Google Scholar]
  • Li X, Deng ZD, Brown RS, et al. 2015. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival. Conserv Physiol 3: 2–17. [Google Scholar]
  • Mulligan K, Towler B, Haro A, Ahlfeld D. 2017. A computational fluid dynamics modeling study of guide walls for downstream fish passage. Ecol Eng 99: 324–332. [Google Scholar]
  • Mulligan K, Towler B, Haro A, Ahlfeld D. 2018. Downstream fish passage guide walls: a hydraulic scale model analysis. Ecol Eng 115: 122–138. [Google Scholar]
  • Nyqvist D, Nilsson P, Alenäs I, et al. 2017. Upstream and downstream passage of migrating adult Atlantic salmon: remedial measures improve passage performance at a hydropower dam. Ecol Eng 102: 331–343. [Google Scholar]
  • Odeh M. 1999. Fish passage Innovation for Ecosystem and Fishery restoration. In : Odeh M. ed. Innovations in Fish Passage Technology. Bethesda, MD: American Fisheries Society, 1–24. [Google Scholar]
  • Odeh M, Orvis C. 1998. Downstream fish passage design considerations and developments at hydroelectric projects in the North-east USA. In Jungwirth M, Schmutz S, Weiss S. eds. Fish Migration and Fish Bypasses, Fishing News Books, 267–280. [Google Scholar]
  • Ovidio M, Dierckx A, Bunel S, Grandry L, Spronck C, Benitez JP. 2017. Poor performance of a retrofitted downstream bypass revealed by the analysis of approaching behaviour in combination with a trapping system. River Res Appl 33: 27–36. [Google Scholar]
  • Pallo S, Larinier M. 2002. Définition d'une stratégie de réouverture de la Dordogne et de ses affluents à la dévalaison des salmonidés grands migrateurs. Simulation des mortalités induites par les aménagements hydroélectriques lors de la migration de dévalaison. Rapport GHAAPPE RA.02.01, 65 p. [Google Scholar]
  • Rakowski CL, Richmond MC, Serkowski JA, Johnson GE. 2006. Forebay computational Fluid Dynamics Modeling for The Dalles Dam to Support Behavior Guidance System Siting Studies. Pacific Northwest National Laboratory, report PNNL-15689, 158 p. [Google Scholar]
  • Raynal S, Chatellier L, Courret D, Larinier M, David L. 2013. An experimental study on fish-friendly trashracks − Part 2. Angled trashracks, J Hydraulic Res 51: 67–75. [CrossRef] [Google Scholar]
  • Rivinoja P. 2005. Migration problems of Atlantic salmon (Salmo salar L.) in flow regulated rivers. Acta Universit Agric Sueciae 114: 1–36. [Google Scholar]
  • Thorstad EB, Whoriskey F, Uglem I, Moore A, Rikardsen AH, Finstad B. 2012. A critical life stage of the Atlantic salmon Salmo salar: behaviour and survival during the smolt and initial post-smolt migration. J Fish Biol 81: 500–542. [CrossRef] [PubMed] [Google Scholar]
  • Thorstad, EB, Havn TB, Sæther SA, Heermann L, Teichert MA, Diserud OH. 2017. Survival and behaviour of Atlantic salmon smolts passing a run-of-river hydropower facility with a movable bulb turbine. Fish Manag Ecol 24: 199207. [CrossRef] [Google Scholar]
  • Tomanova S, Courret D, Alric A, Oliveira E, Lagarrigue T, Têtard S. 2018. Protecting efficiently sea-migrating salmon smolts from entering hydropower plant turbines with inclined or oriented low bar spacing racks. Ecol Eng 122: 143–152. [Google Scholar]
  • Travade F, Dartiguelongue J, Larinier M. 1987. Dévalaison et franchissement des turbines et ouvrages énergétiques : l'expérience EDF. La Houille Blanche 1–2: 135–142. [Google Scholar]
  • Travade F, Larinier M, Boyer-Bernard S, Dartiguelongue J. 1998. Performance of four fish pass installations recently built on two rivers in South-West France. In Jungwirth M, Schmutz S, Weiss S, eds. Fish migration and fish bypass channels, Vienne, 146–170. [Google Scholar]
  • Vikström L. 2016. Effectiveness of a fish-guiding device for downstream migrating smolts of Atlantic salmon (Salmo salar L.) in the River Piteälven, northern Sweden. Swedish University of Agricultural Sciences. Faculty of Forest Science Department of Wildlife, Fish, and Environmental Studies. Examensarbete i ämnet biologi:10, 30 p. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.