Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Article Number 6
Number of page(s) 14
DOI https://doi.org/10.1051/kmae/2019049
Published online 24 January 2020
  • Arle J, Wagner F. 2013. Effects of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany). Hydrobiologia 701: 129–148. [Google Scholar]
  • Balik S, Ustaoulu R, Yildiz S. 2004. Oligochaeta and Aphanoneura (Annelida) Fauna of the Gediz Delta (Menemen-Üzmir). Turk J Zool 28: 183–197. [Google Scholar]
  • Bäthe J, Coring E. 2011. Biological effects of anthropogenic salt − load on the aquatic Fauna: A synthesis of 17 years of biological survey on the rivers Werra and Weser. Limnologica 41: 125–133. [Google Scholar]
  • Berezina NA. 2003. Tolerance of freshwater invertebrates to changes in water salinity. Russ J Ecol 34: 261–266. [CrossRef] [Google Scholar]
  • Bick A, Bastrop R, Kotta J, Meißner K, Meyer M, Syomin V. 2018. Description of a new species of Sabellidae (Polychaeta, Annelida) from fresh and brackish waters in Europe, with some remarks on the branchial crown of Laonome . Zootaxa 4483: 349–364. [CrossRef] [PubMed] [Google Scholar]
  • Bis B, Zdanowicz A, Zalewski M. 2000. Effects of catchment properties on hydrochemistry, habitat complexity and invertebrate community structure in a lowland river. Hydrobiologia 422/423: 369–387. [Google Scholar]
  • Boets P, Lock K, Goethals PLM. 2012. Assessing the importance of alien macro-Crustacea (Malacostraca) within macroinvertebrate assemblages in Belgian coastal harbours. Helgol Mar Res 66: 175–187. [CrossRef] [Google Scholar]
  • Botwe PK, Carver S, Magierowski R, et al. 2018. Effects of salinity and flow interaction on macroinvertebrate traits in temporary streams. Ecol Indic 89: 74–83. [Google Scholar]
  • Braukmann U, Böhme D. 2011. Salt pollution of the middle and lower sections of the river Werra (Germany) and its impact on benthic macroinvertebrates. Limnologica 41: 113–124. [Google Scholar]
  • Brock MA, Nielsen DL, Crossle K. 2005. Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshw Biol 50: 1376–1390. [Google Scholar]
  • Cañedo-Argüelles M, Kefford B, Piscart C, Prat N, Schäfer RB, Schulz CJ. 2013. Salinisation of rivers: an urgent ecological issue. Environ Pollut 173: 157–167. [Google Scholar]
  • Cañedo-Argüelles M, Bundschuh M, Gutiérrez-Cánovas C, et al. 2014. Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Sci Total Environ 476–477, 634–642. [CrossRef] [PubMed] [Google Scholar]
  • Cañedo-Argüelles M, Sala M, Peixoto G, et al. 2015. Can salinity trigger cascade effects on streams? A mesocosm approach. Sci Total Environ 540: 3–10. [PubMed] [Google Scholar]
  • Capítulo AR, Spaccesi F, Armendáriz L. 2014. Stream zoobenthos under extreme conditions in the high Andean plateau of Argentina (South America). J Arid Environ 108: 38–42. [Google Scholar]
  • Celik K. 2002. Community structure of macrobenthos of southeast Texas sand-pit lake related to water temperature, pH and dissolved oxygen concentration. Turk J Zool 26: 333–339. [Google Scholar]
  • Chapman PM, Brinkhurst RO. 1987. Hair Today, Gone Tomorrow: Induced Chaetal Changes in Tubificid Oligochaetes. Hydrobiologia 155: 45–55. [Google Scholar]
  • Chiu KH, Lin CR, Huang HW, Shiea J, Liu LL. 2012. Toxic effects of two brominated flame retardants BDE-47 and BDE-183 on the survival and protein expression of the tubificid Monopylephorus limosus . Ecotoxicol Environ Saf 84: 46–53. [CrossRef] [PubMed] [Google Scholar]
  • Collado R, Kasprzak P, Schmelz RM. 1999. Oligochaeta and Aphanoneura in two Northern German hardwater lakes of different trophic state. Hydrobiologia 406: 143–148. [Google Scholar]
  • Dumnicka E. 2007. Distribution of Oligochaeta in various littoral habitats in the anthropogenic reservoirs. Oceanol Hydrobiol Stud 36: 13–19. [Google Scholar]
  • Dumnicka E. 2014. Stygobitic oligochaetes (Annelida, Clitellata) in Poland with remarks on their distribution in Central Europe. Subterranean Biology 14: 15–24. [Google Scholar]
  • Dumnicka E. 2016. Alien Naididae species (Annelida: Clitellata) and their role in aquatic habitats in Poland. Biologia 71: 16–23. [Google Scholar]
  • Dumnicka E, Krodkiewska M. 2003. Studies on freshwater Oligochaeta communities in the Upper Silesia region (Southern Poland). Biologia 58: 897–902. [Google Scholar]
  • Dumnicka E, Koszałka J. 2005. The effect of drought on Oligochaeta communities in small woodland streams. Biologia, Bratislavia 60: 143–150. [Google Scholar]
  • Dumnicka E, Jabłońska-Barna I, Rychter A. 2014. The first record of a new alien species Limnodrilus cervix Brinkhurst, 1963 (Annelida, Clitellata) in the Vistula Lagoon (southern Baltic Sea). Oceanologia 56: 151–158. [CrossRef] [Google Scholar]
  • Dumnicka E, Konopacka A, Żurek R. 2018. Changes in the benthic fauna composition in the Upper Vistula over the last 50 years − the consequences of the water pollution reduction and alien species invasion. Oceanol Hydrobiol Stud 4: 303–312. [CrossRef] [Google Scholar]
  • Erséus C. 2003. The gutless Tubificidae (Annelida: Oligochaeta) of the Bahamas. Meiofauna Marina 12: 59–84. [Google Scholar]
  • Erséus C, Grimm R, Healy B, Lundberg S, Rota E, Timm T. 1998. A survey of Clitellata in Nationalstadsparken, an urban national park in Stockholm, Sweden. The complete report. Swedish Worm Project (SWORM), Department of Invertebrate Zoology, Swedish Museum of Natural History, Stockholm, 20 p. [Google Scholar]
  • Erséus C, Wetzel MJ, Gustavsson L. 2008. ICZN rules − a farewell to Tubificidae (Annelida, Clitellata). Zootaxa 1744: 66–68. [Google Scholar]
  • Ferreira WR, Paiva LT, Callisto M. 2011. Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Braz J Biol 71: 15–25. [Google Scholar]
  • Frizzera GL, Alves RG. 2012. The influence of taxonomic resolution of Oligochaeta on the evaluation of water quality in an urban stream in Minas Gerais, Brasil. Acta Limnol Bras 24: 408–416. [CrossRef] [Google Scholar]
  • Fujii T. 2007. Spatial patterns of benthic macrofauna in relation to environmental variables in an intertidal habitat in the Humber estuary, UK: Developing a tool for estuarine shoreline management. Estuar Coast Shelf Sci 75: 101–119. [Google Scholar]
  • Gauch HG Jr. 1982. Noise Reduction By Eigenvector Ordinations. Ecology 63: 1643–1649. [Google Scholar]
  • Giere O. 2006. Ecology and biology of marine oligochaeta − an inventory rather than another review. Hydrobiologia 564: 103–116. [Google Scholar]
  • Gillett DJ, Holland AF, Sanger DM. 2007. On the ecology of oligochaetes: Monthly variation of community composition and environmental characteristics in two South Carolina tidal creeks. Estuar Coast 30: 238–252. [CrossRef] [Google Scholar]
  • Górny M, Grüm L. 1981. Metody stosowane w zoologii gleby. Państwowe Wydawnictwo Naukowe, Warszawa, 482 p. [Google Scholar]
  • Halabowski D, Krodkiewska M, Sowa A, Lewin I. 2019. First record of the alien aquatic oligochaete species Monopylephorus limosus (Hatai, 1898) (Annelida) in Central Europe. Oceanol Hydrobiol Stud 48: 290–295. [CrossRef] [Google Scholar]
  • Hammer UT, Sheard JS, Kranabetter J. 1990. Distribution and abundance of littoral benthic fauna in Canadian prairie saline lakes. Hydrobiologia 197: 173–192. [Google Scholar]
  • Harat A, Grmela A. 2008. Impact of mine water from The Upper Silesian Coal Basin areas on change quality of water in Olza river in years 2000–2007. Monitoring Środowiska Przyrodniczego 9: 57–62. [Google Scholar]
  • Hart BT, Bailey P, Edwards R, Hortle K, James K. 1991. A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210: 105–144. [Google Scholar]
  • Heatherly T, Whiles M, Knuth D, Garvey JE. 2005. Diversity and Community Structure of Littoral Zone Macroinvertebrates in Southern Illinois Reclaimed Surface Mine Lakes. Am Midl Nat 154: 67–77. [Google Scholar]
  • Hermanowicz W, Dojlido J, Dożańska W, Koziorowski B, Zerbe J. 1999. Physical and chemical studies of water and wastewater. Arkady, Warszawa, 558 p. [Google Scholar]
  • Jabłońska A. 2014. Oligochaete communities of highly degraded urban streams in Poland, Central Europe. North-West J Zool 10: 74–82. [Google Scholar]
  • Jabłońska-Barna I, Rychter A, Kruk M. 2013. Biocontamination of the western Vistula Lagoon (south-eastern Baltic Sea, Poland). Oceanologia 55: 751–763. [CrossRef] [Google Scholar]
  • Jankowski AT, Rzętała M. 1999. Origin and salinity of lymnic water in the Silesian Upland and adjacent areas. In Choiński A, Jańczak J, eds. Natural and anthropogenic changes of lakes. IMiGW − Oddział w Poznaniu, UAM − Zakład Hydrologii i Gospodarki Wodnej IGF, Warszawa, 97–105 [Google Scholar]
  • Johnson BR, Weaver PC, Nietch CT, Lazorchak JM, Struewing KA, Funk DH. 2014. Elevated major ion concentrations inhibit larval mayfly growth and development. Environ Toxicol Chem 34: 167–172. [CrossRef] [PubMed] [Google Scholar]
  • Kang SR, King SL. 2012. Influence of salinity and prey presence on the survival of aquatic macroinvertebrates of a freshwater marsh. Aquat Ecol 46: 411–420. [Google Scholar]
  • Kefford BJ, Piscart C, Hickey HL, et al. 2012. Global scale variation in the salinity sensitivity of riverine macroinvertebrates: eastern Australia, France, Israel and South Africa. PLoS ONE 7: e35224. [CrossRef] [PubMed] [Google Scholar]
  • Kefford BJ, Buchwalter D, Cañedo-Argüelles M, et al. 2016. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biol Letters 12. [Google Scholar]
  • Klerks PL, Bartholomew PR. 1991. Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri . Aquat Toxicol 19: 97–112. [Google Scholar]
  • Kolbe K, Michaelis H. 2001. Long-term changes of intertidal benthic assemblages in the mesohalinicum of the Weser estuary. Senckenbergiana maritima 31: 197–214. [CrossRef] [Google Scholar]
  • Krodkiewska M. 2006. Freshwater Oligochaeta in Mining Subsidence Ponds in the Upper Silesia Region of Southern Poland. J Freshw Ecol 21: 177–179. [CrossRef] [Google Scholar]
  • Krodkiewska M. 2007. The distribution of Potamothrix bavaricus (Oeschmann, 1913) (Oligochaeta) in anthropogenic freshwater habitats of an industrialised area (Upper Silesia, Poland). Limnologica 37: 259–263. [Google Scholar]
  • Krodkiewska M. 2010. Bottom Oligochaeta communities in navigable canals (the Gliwicki canal and Kędzierzyński canal) and anthropogenic water bodies connected with them. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 108 p. [Google Scholar]
  • Krodkiewska M, Michalik-Kucharz A. 2009. The bottom Oligochaeta communities in sand pits of different trophic status in Upper Silesia (Southern Poland). Aquat Ecol 43: 437–444. [Google Scholar]
  • Krodkiewska M, Królczyk A. 2011. Impact of environmental conditions on bottom oligochaete communities in subsidence ponds (The Silesian Upland, Southern Poland). Int Rev Hydrobiol 96: 48–57. [Google Scholar]
  • Krodkiewska M, Kostecki M. 2015. Assessment of the restoration measures In a Man-made reservoir: do oligochaete communities respond to the improvement of water quality? Environ Monit Assess 187: 592. [CrossRef] [PubMed] [Google Scholar]
  • Krodkiewska M, Strzelec M, Spyra A. 2016. Assessing the diversity of the benthic oligochaete communities in urban and woodland ponds in an industrial landscape (Upper Silesia, southern Poland). Urban Ecosyst 19: 1197–1211. [Google Scholar]
  • Lafont M, Malard F. 2001. Oligochaete communities in the hyporheic zone of a glacial river, the Roseg River, Switzerland. Hydrobiologia 463: 75–81. [Google Scholar]
  • Lang C. 1997. Oligochaetes, organic sedimentation and trophic state: how to assess the biological recovery of sediments in lakes? Aquat Sci 59: 26–33. [Google Scholar]
  • Lang C. 2006. Quantitative relationships between oligochaete communities and phosphorus concentrations in lakes. Freshwater Biol 24: 327–334. [CrossRef] [Google Scholar]
  • Levinton JS, Kelaher B. 2004. Opposing organizing forces of deposit-feeding marine communities. J Exp Mar Bio Ecol 300: 65–82. [Google Scholar]
  • Lin KJ, Yo SP. 2008. The effect of organic pollution on the abundance and distribution of aquatic oligochaetes in an urban water basin, Taiwan. Hydrobiologia 596: 213–223. [Google Scholar]
  • Lv GJ, Xiong BX, Liu M, et al. 2009. The community structure of macrozoobenthos and water quality assessment on different trophic types of reservoirs. Acta Ecol Sin 29: 5339–5349. [Google Scholar]
  • Machowski R. 2010. Transformation of geosystems of water bodies created in the basins of subsidence in the Katowice Upland. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 176 p. [Google Scholar]
  • Maximov AA. 2015. The long-term dynamics and current distribution of macrozoobenthos communities in the Eastern Gulf of Finland, Baltic Sea. Russ J Mar Biol 41: 300–310. [Google Scholar]
  • Milbrink G, Timm T. 2001. Distribution and dispersal capacity of the Ponto-Caspian tubificid oligochaete Potamotrix moldaviensis Vejdovský and Mrázek, 1903 in the Baltic Sea Region. Hydrobiologia 463: 93–102. [Google Scholar]
  • Molenda T. 2011. Natural and anthropogenic conditions of physical and chemical water changes in post-mining aquatic areas of Upper Silesian region and its neighbouring area. Gnome, Katowice, 127 p. [Google Scholar]
  • Montalto L, Marchese M. 2005. Note cyst formation in Tubificidae (Naidinae) and Opistocystidae (Annelida, Oligochaeta) As an adaptive strategy for drought tolerance in fluvial wetlands of the Parana' River, Argentina. Wetlands 25: 488–494. [CrossRef] [Google Scholar]
  • Moreno JL, Angeler DG, De las Heras J. 2010. Seasonal dynamics of macroinvertebrate communities in a semiarid saline spring stream with contrasting environmental conditions. Aquat Ecol 44: 177–193. [Google Scholar]
  • Moseman SM, Levin LA, Currin C, Forder C. 2004. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California. Estuar Coast Shelf Sci 60: 755–770. [Google Scholar]
  • Mount DR, Gulley DD, Hockett JR, Garrison TD, Evans JM. 1997. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environ Toxicol Chem 16: 2009–2019. [Google Scholar]
  • Myślińska E. 2001. Organic and laboratory land testing methods. Państwowe Wydawnictwo Naukowe, Warszawa, 208 p. [Google Scholar]
  • Nielsen DL, Brock M, Crossle K, Harris K, Healey M, Jarosinski I. 2003. The effects of salinity on aquatic plant germination and zooplankton hatching from two wetlands sediments. Freshw Biol 48: 2214–2223. [Google Scholar]
  • Nielsen DL, Brock MA, Vogel M, Petrie R. 2008. From fresh to saline: a comparison of zooplankton and plant communities developing under a gradient of salinity with communities developing under constant salinity levels. Mar Freshw Res 59: 49–559. [Google Scholar]
  • Nijboer RC, Wetzel MJ, Verdonschot PFM. 2004. Diversity and distribution of Tubificidae, Naididae and Lumbriculidae (Annelida: Oligochaeta) in the Netherlands: an evaluation of twenty years of monitoring data. Hydrobiologia 520: 127–141. [Google Scholar]
  • Ohtaka A. 2018. Aquatic oligochaete fauna (Annelida, Clitellata) in Lake Tonle Sap and adjacent waters in Cambodia. Limnology 19: 367–373. [Google Scholar]
  • Ohtaka A, Narita T, Kamiya T, et al. 2011. Composition of aquatic invertebrates associated with macrophytes in Lake Tonle Sap, Cambodia. Limnology 12: 137–144. [Google Scholar]
  • Otermin A, Basaguren A, Pozo J. 2002. Re-colonization by the Macroinvertebrate Community after a Drought Period in a First-Order Stream (Agüera Basin, Northern Spain). Limnetica 21: 117–128. [Google Scholar]
  • Pabis K, Krodkiewska M, Cebulska K. 2017. Alien freshwater polychaetes Hypania invalida (Grube 1860) and Laonome calida Capa 2007 in the Upper Odra River (Baltic Sea catchment area). Knowl Manag Aquat Ecosyst 418: 1–3. [Google Scholar]
  • Pascar-Gluzman C, Dimentman C. 1984. Distribution and habitat characteristics of Naididae and Tubificidae in the inland waters of Israel and the Sinai Peninsula. Hydrobiologia 115: 197–205. [Google Scholar]
  • Piscart C, Moreteau JC, Beisel JN. 2005. Biodiversity and structure of macroinvertebrate communities along a small permanent salinity gradient (Meurthe River, France). Hydrobiologia 551: 227–236. [Google Scholar]
  • Piscart C, Usseglio-Polatera P, Moreteau JC, Beisel JN. 2006. The role of salinity in the selection of biological traits of freshwater invertebrates. Arch Hydrobiol 166: 185–198. [CrossRef] [Google Scholar]
  • Piscart C, Kefford BJ, Beisel JN. 2011. Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? Limnologica 41: 107–112. [Google Scholar]
  • Potyutko OM. 2015. Oligochaeta (Annelida, Oligochaeta) in the Curonian Lagoon of the Baltic Sea. Inland Water Biol 8: 269–275. [CrossRef] [Google Scholar]
  • Prygiel J, Rosso-Darmet A, Lafont M, Lesniak C, Durbec A, Ouddane B. 2000. Use of oligochaete communities for assessment of ecotoxicological risk In fine sediment of rivers and canals of the Artois-Picardie water basin (France). Hydrobiologia 410: 25–37. [Google Scholar]
  • Rodriguez P. 1999. Monopylephorus camachoi nov. sp., a new rhyacodriline worm (Tubificidae: Clitellata) from the Coiba Island, on the east Pacific Coast of Panama. Hydrobiologia 406: 49–55. [Google Scholar]
  • Rodriquez P, Arrate J, Martinez-Madrid M, Reynoldson TB, Schumacher V, Viguri J. 2006. Toxicity of Santander Bay Sediments to the Euryhaline Freshwater Oligochaete Limnodrilus hoffmeisteri . Hydrobiologia 564: 157–169. [Google Scholar]
  • Rosa BJFV, Rodrigues LFT, de Oliveira GS, da Gama Alves R. 2014. Chironomidae and Oligochaeta for water quality evaluation in an urban river in southeastern Brazil. Environ Monit Assess 186: 7771–7779. [CrossRef] [PubMed] [Google Scholar]
  • Rutherford JC, Kefford BJ. 2005. Effects of salinity on stream ecosystems: improving models for macroinvertebrate. CSIRO Land and Water, Canberra, Australia, Report 22/05, 64 p. [Google Scholar]
  • Rzętała M. 2008. Functioning of water reservoirs and the course of limnic processes under conditions of varied anthropopression a case study of Upper Silesian Region. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 171 p. [Google Scholar]
  • Rzętała M, Jaguś A. 2012. New lake district in Europe: Origin and hydrochemical characteristics. Water Environ J 26: 108–117. [Google Scholar]
  • Saaltink RM, Honingh E, Dekker SC, et al. 2019. Respiration and aeration by bioturbating Tubificidae alter biogeochemical processes in aquatic sediment. Aquat Sci 81: 13. [Google Scholar]
  • Sambugar B. 2007. Oligochaetes from Alpine springs: a review. In Cantonati M, Bertuzzi E, Spitale D, eds. The spring habitat: biota and sampling methods. Museo Tridentino di Scienze Naturali, Trento, 185–192. [Google Scholar]
  • Sardà R, Valiela I, Foreman K. 1996. Decadal shifts in a salt marsh macroinfaunal community in response to sustained long-term experiment nutrient enrichment. J Exp Mar Biol Ecol 205: 63–81. [Google Scholar]
  • Schenková J, Helešic J. 2006. Habitat preferences of aquatic Oligochaeta (Annelida) in the Rokytná River, Czech Republic − a small highland stream. Hydrobiologia 564: 117–126. [Google Scholar]
  • Soors J, van Haaren T, Timm T, Speybroeck J. 2013. Bratislavia dadayi (Michaelsen, 1905) (Annelida: Clitellata: Naididae): a new non-indigenous species for Europe, and other non-native annelids in the Schelde estuary. Aquat Invasions 8: 37–44. [Google Scholar]
  • Szöcs E, Coring E, Bäthe J, Schäfer RB. 2014. Effects of anthropogenic salinization on biological traits and community composition of stream macroinvertebrates. Sci Total Environ 468–469: 943–949. [PubMed] [Google Scholar]
  • ter Braak CJF, Šmilauer P. 2012. Canoco reference manual and user's guide: software for ordination, version 5.0. Microcomputer Power, Ithaca USA, 496 p. [Google Scholar]
  • Tessier R, Campbell PGC, Bisson M (1979) Sequential Extraction Procedure for the Speciation of Trace Metals. Anal Chem 51: 844–851 [Google Scholar]
  • Timm T. 1999. Distribution of freshwater oligochaetes in the west and east coastal regions of the North Pacific Ocean. Hydrobiologia 406: 67–81. [Google Scholar]
  • Timm T. 2009. A guide to the freshwater Oligochaeta and Polychaeta of the Northern and Central Europe. Lauterbornia 66. Mauch, Dinkelscherben, 235 p. [Google Scholar]
  • Timm T. 2012. Life forms in Oligochaeta: a literature review. Advances of the 5th International Oligochaeta Taxonomy Meeting Zoology in the Middle East. Supplementum 4: 071–082. [Google Scholar]
  • Timm T. 2013. The genus Potamothrix (Annelida, Oligochaeta, Tubificidae): a literature review. Eston J Ecol 62: 121–136. [CrossRef] [Google Scholar]
  • Timm T, Kangur T, Timm H, Timm V. 1996. Macrozoobenthos of Lake Peipsi-Pikhva: taxonomical composition, abundance, biomass and their relation to some ecological parameters. Hydrobiologia 338: 139–154. [Google Scholar]
  • Timm T, Seire A, Pall P. 2001. Half a century of oligochaete research in Estonian running waters. Hydrobiologia 463: 223–234. [Google Scholar]
  • van Haaren T. 2002. Eight species of aquatic oligochaeta new for the Netherlands (Annelida). Nederl Faun Med 16: 39–56. [Google Scholar]
  • van Haaren T, Soors J. 2013. Aquatic Oligochaeta of the Netherlands and Belgium. KNNV Publishing, 400 p. [Google Scholar]
  • Verdonschot PFM. 2006. Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564: 127–142. [Google Scholar]
  • Vivien R, Tixier G, Lafont M. 2014. Use of oligochaete communities for assessing the quality of sediments in watercourses of the Geneva area (Switzerland) and Artois-Picardie basin (France): proposition of heavy metal toxicity thresholds. Ecohydrol Hydrobiol 14: 142–151. [CrossRef] [Google Scholar]
  • Vöge S, Reiss H, Kröncke I. 2008. Macrofauna succession in an infilling salt marsh clay pit. – Senckenbergiana maritima 38: 93–106. [Google Scholar]
  • Williams WD. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201. [Google Scholar]
  • Williams WD. 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466: 329–337. [Google Scholar]
  • Williams WD, Boulton AJ, Taaffe RG. 1990. Salinity as a determinant of salt lake fauna: a question of scale. Hydrobiologia 197: 257–266. [Google Scholar]
  • Wolf B, Kiel E, Hagge A, Kireg HJ, Feld ChK. 2009. Using the salinity preferences of benthic macroinvertebrates to classify running waters in brackish marshes in Germany. Ecol Indic 9: 837–847. [Google Scholar]
  • Wolfram G, Donabaum K, Schagerl M, Kowarc VA. 1999. The zoobenthic community of shallow salt pans in Austria − Preliminary results on phenology and the impact of salinity on benthic invertebrates. Hydrobiologia 408–409: 193–202. [Google Scholar]
  • Yildiz S. 2016. Habitat preferences of aquatic oligochaeta (Annelida) species in the lake district (Turkey). Fresen Environ Bull 25: 4362–4373. [Google Scholar]
  • Zinchenko TD, Golovatyuk LV. 2013. Salinity tolerance of macroinvertebrates in stream waters (review). Arid Ecosyst 3: 113–121. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.