Issue
Knowl. Manag. Aquat. Ecosyst.
Number 421, 2020
Topical Issue on Fish Ecology
Article Number 7
Number of page(s) 23
DOI https://doi.org/10.1051/kmae/2019046
Published online 27 January 2020
  • Aalto E, Capoccioni F, Terradez Mas J, et al. 2016. Quantifying 60 years of declining European eel (Anguilla anguilla L., 1758) fishery yields in Mediterranean coastal lagoons. ICES J Mar Sci 73: 101–110. [Google Scholar]
  • Acou A, Legault A, Laffaille P, Feunteun E. 2009. Environmental determinism of year-to-year recruitment variability of European eel Anguilla anguilla in a small coastal catchment, the Frémur River, north-west France. J Fish Biol 74: 1985–2001. [CrossRef] [PubMed] [Google Scholar]
  • Akaike H. 1974. A new look at the statistical model identification. IEEE Trans Autom Control 19: 716–723. [Google Scholar]
  • Almeida PR, Quintella BR, Mateus CS, Alexandre CM, Pedro S. 2018. Diadromous fish in Portugal: status, threats and management guidelines. University of Algarve, Portugal, 28 p. [Google Scholar]
  • Anonyme. 2018. Plan de gestion anguille de la France − Rapport de mise en œuvre, France, 200 p. [Google Scholar]
  • Aprahamian MW, Baglinière J-L, Sabatié MR, Alexandrino P, Thiel R, Aprahamian CD. 2003. Biology, Status, and Conservation of the Anadromous Atlantic Twaite Shad Alosa fallax fallax. Am Fish Soc Symp 23. [Google Scholar]
  • Baglinière JL, Ellie P. 2000. Les aloses (Alosa alosa et Alosa fallax spp.). Paris, France: INRA-Cemagref edition, 275 p. [Google Scholar]
  • Baglinière J-L, Sabatié MR, Rochard E, Alexandrino P, Aprahamian MW. 2003. The allis shad Alosa alosa: Biology, ecology, range, and status of populations. Am Fish Soc Symp 2003: 85–102. [Google Scholar]
  • Baisez A, Bach J-M, Leon C, et al. 2011. Migration delays and mortality of adult Atlantic salmon Salmo salar en route to spawning grounds on the River Allier, France. Endang Spec Res 15: 265–270. [CrossRef] [Google Scholar]
  • Bal G. 2011. Évolution des populations françaises de saumon atlantique (Salmo salar L.) et changement climatique. Université de Rennes 1, France, 352 p. [Google Scholar]
  • Barak NA-E, Mason CF. 1992. Population density, growth and diet of eels, Anguilla anguilla L., in two rivers in eastern England. Aquac Res 23: 59–70. [Google Scholar]
  • Barnosky AD, Matzke N, Tomiya S, et al. 2011. Has the Earth's sixth mass extinction already arrived? Nature 471: 51–57. [Google Scholar]
  • Beaulaton L, Taverny C, Castelnaud G. 2008. Fishing, abundance and life history traits of the anadromous sea lamprey (Petromyzon marinus) in Europe. Fish Res 92: 90–101. [Google Scholar]
  • Bergerot B, Cattanéo F. 2016. Hydrological drivers of brown trout population dynamics in France. Ecohydrology 1–15. [Google Scholar]
  • Bergstedt RA, Seelye JG. 1995. Evidence for Lack of Homing by Sea Lampreys. Trans Am Fish Soc 124: 235–239. [Google Scholar]
  • Blomqvist MM, Vos P, Klinkhamer PGL, ter Keurs WJ. 2003. Declining plant species richness of grassland ditch banks—a problem of colonisation or extinction? Biol Conserv 109: 391–406. [Google Scholar]
  • Bonhommeau S, Chassot E, Rivot E. 2008. Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea. Fish Oceanogr 17: 32–44. [Google Scholar]
  • Borsuk ME, Reichert P, Peter A, Schager E, Burkhardt-Holm P. 2006. Assessing the decline of brown trout (Salmo trutta) in Swiss rivers using a Bayesian probability network. Ecol Model 192: 224–244. [CrossRef] [Google Scholar]
  • Brett JR. 1967. Swimming Performance of Sockeye Salmon (Oncorhynchus nerka) in relation to Fatigue Time and Temperature. J Fish Res Board Canada 24: 1731–1741. [CrossRef] [Google Scholar]
  • Briand, C. 2009. Dynamique de population et de migration des civelles en estuaire de Vilaine. Agrocampus Ouest, 205 p. [Google Scholar]
  • Briand C, Chapon PM, Beaulaton L, Drouineau H, Lambert P. 2018. Eel density analysis (EDA 2.2.1). Escapement of silver eels (Anguilla anguilla) from French rivers. EPTB Vilaine, AFB-INRA, IRSTEA, 99 p. [Google Scholar]
  • Briand C, Fatin D, Fontenelle G, Feunteun E. 2003. Estuarine and fluvial recruitment of the European glass eel, Anguilla anguilla, in an exploited Atlantic estuary. Fish Manag Ecol 10: 377–384. [CrossRef] [Google Scholar]
  • Brodeur P, Mingelbier M, Bergeron N. 2007. Attractiveness and passage efficiency of two vertical slot fishways for non-salmonids in a temperate system, St. Lawrence River, Canada. [Google Scholar]
  • Brun M. 2011. Aide à la décision pour la conservation des populations de saumon atlantique (Salmo salar L.), Pau, 252 p. [Google Scholar]
  • Bryan MB, Zalinski D, Filcek KB, Libants S, Li W, Scribner KT. 2005. Patterns of invasion and colonization of the sea lamprey (Petromyzon marinus) in North America as revealed by microsatellite genotypes. Mol Ecol 14: 3757–3773. [CrossRef] [PubMed] [Google Scholar]
  • Buisson L, Thuiller W, Lek S, Lim P, Grenouillet G. 2008. Climate change hastens the turnover of stream fish assemblages. Glob Change Biol 14: 2232–2248. [CrossRef] [Google Scholar]
  • Butchart SHM, Walpole M, Collen B, et al. 2010. Global Biodiversity: Indicators of Recent Declines. Science 328: 1164–1168. [Google Scholar]
  • Caro T. 2008. Decline of large mammals in the Katavi-Rukwa ecosystem of western Tanzania. Afr Zool 43: 99–116. [CrossRef] [Google Scholar]
  • Ceballos G, Ehrlich PR, Dirzo R. 2017. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. PNAS 114: 6089–6096. [CrossRef] [Google Scholar]
  • Chaput G. 2012. Overview of the status of Atlantic salmon (Salmo salar) in the North Atlantic and trends in marine mortality. ICES J Mar Sci 69: 1538–1548. [Google Scholar]
  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333: 1024–1026. [Google Scholar]
  • Clausen R, York R. 2008. Global biodiversity decline of marine and freshwater fish: A cross-national analysis of economic, demographic, and ecological influences. Soc Sci Res 37: 1310–1320. [Google Scholar]
  • Clavero M, Brotons L, Pons P, Sol D. 2009. Prominent role of invasive species in avian biodiversity loss. Biol Conserv 142: 2043–2049. [Google Scholar]
  • Cloern JE, Abreu PC, Carstensen J, et al. 2016. Human activities and climate variability drive fast-paced change across the world's estuarine–coastal ecosystems. Glob Change Biol 22: 513–529. [CrossRef] [Google Scholar]
  • Coll M, Carreras M, Cornax MJ, et al. 2014. Closer to reality: Reconstructing total removals in mixed fisheries from Southern Europe. Fish Res 154: 179–194. [Google Scholar]
  • Collen B, Whitton F, Dyer EE, et al. 2014. Global patterns of freshwater species diversity, threat and endemism. Glob Ecol Biogeogr 23: 40–51. [CrossRef] [PubMed] [Google Scholar]
  • Comte L, Grenouillet G. 2015. Distribution shifts of freshwater fish under a variable climate: comparing climatic, bioclimatic and biotic velocities. Divers Distrib 21: 1014–1026. [Google Scholar]
  • Culp LA, Cohen EB, Scarpignato AL, Thogmartin WE, Marra PP. 2017. Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere 8: 1–22. [PubMed] [Google Scholar]
  • Dannewitz J, Maes GE, Johansson L, Wickström H, Volckaert FAM, Järvi T. 2005. Panmixia in the European eel: a matter of time. Proc Roy Soc Biol Sci 272: 1129–1137. [CrossRef] [Google Scholar]
  • Daufresne M, Boët P. 2007. Climate change impacts on structure and diversity of fish communities in rivers. Glob Change Biol 13: 2467–2478. [CrossRef] [Google Scholar]
  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM. 2011. Beyond predictions: biodiversity Conservation in a Changing Climate. Science 332: 53–58. [Google Scholar]
  • De Eyto E, Dalton C, Dillane M, et al. 2016. The response of North Atlantic diadromous fish to multiple stressors, including land use change: a multidecadal study. Can J Fish Aquat Sci 73: 1759–1769. [Google Scholar]
  • De Eyto E, White J, Boylan P, et al. 2015. The fecundity of wild Irish Atlantic salmon Salmo salar L. and its application for stock assessment purposes. Fish Res 164: 159–169. [Google Scholar]
  • Dekker W. 2000. Fractal geometry of the European eel stock. ICES J Mar Sci 57: 109–121. [Google Scholar]
  • Dekker W. 2003a. A conceptual management framework for the restoration of the declining european eel stock. In: Slipping through our hands − Population dynamics of the European eel, 188 p. [Google Scholar]
  • Dekker W. 2003b. Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fish Manag Ecol 10: 365–376. [CrossRef] [Google Scholar]
  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. 2014. Defaunation in the Anthropocene. Science 345: 401–406. [Google Scholar]
  • Dumas J, Prouzet P. 1994. Repeuplement et pacage marin. In: Guegen JC and Prouzet P, ed. Le saumon atlantique: Biologie et gestion de la ressource, Ifremer, Paris, 239–254. [Google Scholar]
  • Fenkes M, Shiels HA, Fitzpatrick JL, Nudds RL. 2016. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes. Comp Biochem Physiol A 193: 11–21. [CrossRef] [Google Scholar]
  • Freyhof J, Brooks E. 2011. European red list of freshwater fishes. Luxembourg: Publications Office of the European Union, 70 p. [Google Scholar]
  • Frissell CA. 1993. Topology of Extinction and Endangerment of Native Fishes in the Pacific Northwest and California. Conserv Biol 7: 342–354. [Google Scholar]
  • Gascuel D. 1986. Flow-carried and active swimming migration of the glass eel (Anguilla anguilla) in the tidal area of a small estuary on the French Atlantic coast. Helgolander Meeresunters 40: 321–326. [CrossRef] [Google Scholar]
  • Glover RS, Fryer RJ, Bacon PJ, Soulsby C, Malcolm IA. 2018. Do trends in the size of wild female Atlantic salmon have a substantial effect on egg deposition? Fish Manag Ecol 25: 158–161. [CrossRef] [Google Scholar]
  • Goulmy F. 2016. Station de comptages piscicoles des Claies de Vire − Comptage des poissons grands migrateurs. Fédération Départementale des Associations Agréées pour la Pêche et la Protection du Milieu Aquatique de la Manche, France, 66 p. [Google Scholar]
  • Gozlan R, Karimov B, Zadereev E, Kuznetsova D, Brucet S. 2019. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters: 1–17. [Google Scholar]
  • Grime JP. 2002. Declining plant diversity: empty niches or functional shifts? J Veg Sci 13: 457–460. [Google Scholar]
  • Haapasaari P, Karjalainen TP. 2010. Formalizing expert knowledge to compare alternative management plans: sociological perspective to the future management of Baltic salmon stocks. Mar Policy 34: 477–486. [Google Scholar]
  • Hallmann CA, Sorg M, Jongejans E, et al. 2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12: 1–21. [Google Scholar]
  • Hamed KH, Ramachandra Rao A. 1998. A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204: 182–196. [Google Scholar]
  • Haro A, Castro-Santos T, Noreika J, Odeh M. 2004. Swimming performance of upstream migrant fishes in open-channel flow: a new approach to predicting passage through velocity barriers. Can J Fish Aquatic Sci 61: 1590–1601. [CrossRef] [Google Scholar]
  • Harris G, Thirgood S, Hopcraft JGC, Cromsigt JPGM, Berger J. 2009. Global decline in aggregated migrations of large terrestrial mammals. Endang Spec Res 7: 55–76. [CrossRef] [Google Scholar]
  • Hasselman DJ, Bradford RG, Bentzen P. 2010. Taking stock: defining populations of American shad (Alosa sapidissima) in Canada using neutral genetic markers. Can J Fish Aquat Sci 67: 1021–1039. [Google Scholar]
  • Heller NE, Zavaleta ES. 2009. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142: 14–32. [Google Scholar]
  • Horreo JL, Griffiths AM, Machado‐Schiaffino G, Stevens JR, Garcia‐Vazquez E. 2018. Northern areas as refugia for temperate species under current climate warming: Atlantic salmon (Salmo salar L.) as a model in northern Europe. J Fish Biol 95: 304–310. [CrossRef] [PubMed] [Google Scholar]
  • Hughes TP. 1994. Catastrophes, phase shifts, and large-scale degradation of a caribbean coral reef. Science 265: 1547–1551. [Google Scholar]
  • Ibbotson A, Smith J, Scarlett P, Aprhamian M. 2002. Colonisation of freshwater habitats by the European eel Anguilla anguilla. Freshw Biol 47: 1696–1706. [Google Scholar]
  • ICES. 2015. Report of the Joint EIFAAC/ICES/GFCM Working Group on Eel (WGEEL). Antalya, Turkey, 132 p. [Google Scholar]
  • ICES. 2018. Report of the Working Group on North Atlantic Salmon (WGNAS). Woods Hole, 386 p. [Google Scholar]
  • IPBES. 2019. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. E. S. Brondizio, J. Settele, S. Díaz, and H. T. Ngo (editors). Bonn, Germany: IPBES Secretariat. [Google Scholar]
  • Jolly MT, Aprahamian MW, Hawkins SJ, et al. 2012. Population genetic structure of protected allis shad (Alosa alosa) and twaite shad (Alosa fallax). Mar Biol 159: 675–687. [Google Scholar]
  • Jones GP, McCormick MI, Srinivasan M, Eagle JV. 2004. Coral decline threatens fish biodiversity in marine reserves. PNAS 101: 8251–8253. [CrossRef] [PubMed] [Google Scholar]
  • Keefer ML, Caudill CC. 2014. Homing and straying by anadromous salmonids: a review of mechanisms and rates. Rev Fish Biol Fisheries 24: 333–368. [CrossRef] [Google Scholar]
  • Kelhart MD. 2007. Declining amphibian populations: what is the next step? BioScience 57: 112–112. [Google Scholar]
  • Kettle AJ, Vøllestad LA, Wibig J. 2011. Where once the eel and the elephant were together: decline of the European eel because of changing hydrology in southwest Europe and northwest Africa? Fish Fish 12: 380–411. [CrossRef] [Google Scholar]
  • King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA. 2001. Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Mol Ecol 10: 807–821. [CrossRef] [PubMed] [Google Scholar]
  • Kuczynski L, Chevalier M, Laffaille P, Legrand M, Grenouillet G. 2017. Indirect effect of temperature on fish population abundances through phenological changes. PLOS ONE 12: 1–13. [Google Scholar]
  • Laffaille P, Caraguel J-M, Legault A. 2007. Temporal patterns in the upstream migration of European glass eels (Anguilla anguilla) at the Couesnon estuarine dam. Estuarine. Coastal Shelf Sci 73: 81–90. [CrossRef] [Google Scholar]
  • Lambert P, Jatteau P, Paumier A, Carry L, Drouineau H. 2018. Allis shad adopts an efficient spawning tactic to optimise offspring survival. Environ Biol Fish 101: 315–326. [CrossRef] [Google Scholar]
  • Lasne É, Laffaille P. 2008a. Analysis of distribution patterns of yellow European eels in the Loire catchment using logistic models based on presence–absence of different size-classes. Ecol Freshw Fish 17: 30–37. [Google Scholar]
  • Lasne É, Laffaille P. 2008b. Assessing the freshwater distribution of yellow eel. Knowl Manag Aquatic Ecosyst 390–391: 1–11. [Google Scholar]
  • Lassalle G, Rochard E. 2009. Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Glob Change Biol 15: 1072–1089. [CrossRef] [Google Scholar]
  • Legrand M, Briand C, Besse T. 2019. stacomiR: a common tool for monitoring fish migration. J Open Source Softw 4: 1–3. [Google Scholar]
  • Liermann H. 2001. Depensation: evidence, models and implications. Fish Fish 2: 33–58. [CrossRef] [Google Scholar]
  • Limburg KE, Waldman JR. 2009. Dramatic Declines in North Atlantic Diadromous Fishes. BioScience 59: 955–965. [Google Scholar]
  • Lobón‐Cerviá J. 2009. Why, when and how do fish populations decline, collapse and recover? The example of brown trout (Salmo trutta) in Rio Chaballos (northwestern Spain). Freshw Biol 54: 1149–1162. [Google Scholar]
  • Lucas MC, Baras E. 2000. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish 1: 283–316. [CrossRef] [Google Scholar]
  • Maas‐Hebner KG, Schreck C, Hughes RM, Yeakley JA, Molina N. 2016. Scientifically Defensible Fish Conservation and Recovery Plans: Addressing Diffuse Threats and Developing Rigorous Adaptive Management Plans. Fisheries 41: 276–85. [CrossRef] [Google Scholar]
  • Maes GE, Volckaert FaM. 2002. Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla (L.). Biol J Linn Soc 77: 509–521. [CrossRef] [Google Scholar]
  • Maire A, Thierry E, Viechtbauer W, Daufresne M. 2019. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshw Biol 00: 1–14. [Google Scholar]
  • Martin J, Rougemont Q, Drouineau H, et al. 2015. Dispersal capacities of anadromous Allis shad population inferred from a coupled genetic and otolith approach. Can J Fish Aquat Sci 72: 991–1003. [Google Scholar]
  • Maunder MN, Sibert JR, Fonteneau A, Hampton J, Kleiber P, Harley SJ. 2006. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J Mar Sci 63: 1373–1385. [Google Scholar]
  • McDowall RM. 1997. The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Fish Biol Fish 7: 443–462. [CrossRef] [Google Scholar]
  • McDowall RM. 2001. Anadromy and homing: two life-history traits with adaptive synergies in salmonid fishes? Fish Fish 2: 78–85. [CrossRef] [Google Scholar]
  • McDowall RM. 2008. Diadromy, history and ecology: a question of scale. Hydrobiologia 602: 5–14. [Google Scholar]
  • Melvin GD, Dadswell MJ, Martin JD. 1986. Fidelity of American Shad, Alosa sapidissima (Gupeidae), to its River of Previous Spawning. Can J Fish Aquat Sci 43: 640–646. [Google Scholar]
  • Milner NJ, Elliott JM, Armstrong JD, Gardiner R, Welton JS, Ladle M. 2003. The natural control of salmon and trout populations in streams. Fish Res 62: 111–125. [Google Scholar]
  • Mota M, Rochard E, Antunes CA. 2016. Status of the Diadromous fish of the Iberian Peninsula: Past, present and trends. Limnetica 35: 1–18. [Google Scholar]
  • Murphy GEP, Romanuk TN. 2014. A meta-analysis of declines in local species richness from human disturbances. Ecol Evol 4: 91–103. [PubMed] [Google Scholar]
  • Myers GS. 1949. Usage of Anadromous, Catadromous and Allied Terms for Migratory Fishes. Copeia 1949: 89–97. [Google Scholar]
  • Myers RA, Barrowman NJ, Hutchings JA, Rosenberg AA. 1995. Population dynamics of exploited fish stocks at low population levels. Oceanogr Literat Rev 269: 1106–1108. [Google Scholar]
  • Nachón DJ, Mota M, Autunes C, Servia MJ, Cobo F. 2015. Marine and continental distribution and dynamic of the early spawning migration of twaite shad (Alosa fallax (Lacépède, 1803)) and allis shad (Alosa alosa (Linnaeus, 1758)) in the north-west of the Iberian Peninsula. Mar Freshw Res 67: 1229–1240. [Google Scholar]
  • Nicola GG, Elvira B, Jonsson B, Ayllón D, Almodóvar A. 2018. Local and global climatic drivers of Atlantic salmon decline in southern Europe. Fish Res 198: 78–85. [Google Scholar]
  • Nieto A, Ralph GM, Comeros-Raynal MT, et al. 2015. European Red List of marine fishes. Luxembourg: Publications Office of the European Union, 90 p. [Google Scholar]
  • Nilsson S, Franzén M, Jönsson E. 2008. Long-term land-use changes and extinction of specialised butterflies. Insect Conserv Divers 1: 197–207. [Google Scholar]
  • Palm S, Dannewitz J, Prestegaard T, Wickström H. 2009. Panmixia in European eel revisited: no genetic difference between maturing adults from southern and northern Europe. Heredity 103: 82–89. [CrossRef] [PubMed] [Google Scholar]
  • Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. [Google Scholar]
  • Parrish DL, Behnke RJ, Gephard SR, McCormick SD, Reeves GH. 1998. Why aren't there more Atlantic salmon (Salmo salar)? Can J Fish Aquat Sci 55: 281–287. [Google Scholar]
  • Perrier C, Guyomard R, Bagliniere J-L., Nikolic N, Evanno G. 2013. Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 3: 2334–2349. [CrossRef] [PubMed] [Google Scholar]
  • Petersson E. 2015. Homing and Timing of Reproduction. In: Evolutionary Biology of the Atlantic Salmon. New York: Taylor & Francis Group, 290 p. [Google Scholar]
  • Pimm SL, Raven P. 2000. Extinction by numbers. Nature 403: 843–845. [Google Scholar]
  • Piper A, Wright RM, Kemp PS. 2012. The influence of attraction flow on upstream passage of European eel (Anguilla anguilla) at intertidal barriers. Ecol Eng 44: 329–336. [Google Scholar]
  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25: 345–353. [CrossRef] [PubMed] [Google Scholar]
  • Poulet N, Beaulaton L, Dembski S. 2011. Time trends in fish populations in metropolitan France: insights from national monitoring data. J Fish Biol 79: 1436–1452. [CrossRef] [PubMed] [Google Scholar]
  • Randon M, Daverat F, Bareille G, et al. 2018. Quantifying exchanges of Allis shads between river catchments by combining otolith microchemistry and abundance indices in a Bayesian model. ICES J Mar Sci 75: 9–21. [Google Scholar]
  • Reynolds JD, Dulvy NK, Goodwin NB, Hutchings JA. 2005. Biology of extinction risk in marine fishes. Proc Roy Soc Biol Sci 272: 2337–2344. [CrossRef] [Google Scholar]
  • Rochette S, Rivot E, Morin J, Mackinson S, Riou P, Le Pape O. 2010. Effect of nursery habitat degradation on flatfish population: application to Solea solea in the Eastern Channel (Western Europe). J Sea Res 64: 34–44. [Google Scholar]
  • Romakkaniemi A, Perä I, Karlsson L, Jutila E, Carlsson U, Pakarinen T. 2003. Development of wild Atlantic salmon stocks in the rivers of the northern Baltic Sea in response to management measures. ICES J Mar Sci 60: 329–342. [Google Scholar]
  • Root TLP, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57–60. [Google Scholar]
  • Rougier T, Lambert P, Drouineau H, et al. 2012. Collapse of allis shad, Alosa alosa, in the Gironde system (southwest France): environmental change, fishing mortality, or Allee effect? ICES J Mar Sci 69: 1802–1811. [Google Scholar]
  • Sommer T, Armor C, Baxter R, et al. 2007. The Collapse of Pelagic Fishes in the Upper San Francisco Estuary. Fisheries 32: 270–277. [CrossRef] [Google Scholar]
  • Spice EK, Goodman DH, Reid SB, Docker MF. 2012. Neither philopatric nor panmictic: microsatellite and mtDNA evidence suggests lack of natal homing but limits to dispersal in Pacific lamprey. Mol Ecol 21: 2916–2930. [CrossRef] [PubMed] [Google Scholar]
  • Stout JC, Morales CL. 2009. Ecological impacts of invasive alien species on bees. Apidologie 40: 388–409. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sun G-Q. 2016. Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn 85: 1–12. [Google Scholar]
  • Thibault M. 1994. Aperçu historique sur l'évolution des captures et des stocks. In: Guegen JC, Prouzet P,ed. Le saumon atlantique: Biologie et gestion de la ressource, Ifremer, Paris, 175–184. [Google Scholar]
  • Vasilakopoulos P, Maravelias CD, Tserpes G. 2014. The Alarming Decline of Mediterranean Fish Stocks. Curr Biol 24: 1643–1648. [CrossRef] [PubMed] [Google Scholar]
  • Van de Pol M, Wright J. 2009. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77: 753–758. [Google Scholar]
  • Van Rij J. 2016. Testing for significance. http://www.jacolienvanrij.com/itsadug/test.html [Google Scholar]
  • Van Rij J, Wieling M, Baayen R, van Rijn H. 2017. itsadug: Interpreting Time Series and Autocorrelated Data Using GAMMs. R package version 2.3. [Google Scholar]
  • Viechtbauer W. 2010. Conducting Meta-Analyses in R with the metafor Package. J Stat Softw 36: 1–48. [Google Scholar]
  • Wake DB. 1991. Declining amphibian populations. Science 253: 860. [Google Scholar]
  • Waldman J, Grunwald C, Wirgin I. 2008. Sea lamprey Petromyzon marinus: an exception to the rule of homing in anadromous fishes. Biol Lett 4: 659–662. [CrossRef] [PubMed] [Google Scholar]
  • Waldman J, Wilson KA, Mather M, Snyder NP. 2016. A resilience approach can improve anadromous fish restoration. Fisheries 41: 116–126. [CrossRef] [Google Scholar]
  • Walther G-R, Post E, Convey P, et al. 2002. Ecological responses to recent climate change. Nature 416: 389–95. [Google Scholar]
  • Walther BD, Thorrold SR, Olney JE. 2008. Geochemical Signatures in Otoliths Record Natal Origins of American Shad. Trans Am Fish Soc 137: 57–69. [Google Scholar]
  • Watson RT. 2005. Turning science into policy: challenges and experiences from the science-policy interface. Philos Trans Royal Soc B 360: 471–477. [Google Scholar]
  • Williams JE, Blois JL. 2018. Range shifts in response to past and future climate change: can climate velocities and species' dispersal capabilities explain variation in mammalian range shifts? J Biogeogr 45: 2175–2189. [Google Scholar]
  • Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA. 2009. A meta-analysis of bees' responses to anthropogenic disturbance. Ecology 90: 2068–2076. [PubMed] [Google Scholar]
  • Wirth T, Bernatchez L. 2003. Decline of North Atlantic eels: a fatal synergy? Proc Royal Soc London 270: 681–688. [CrossRef] [Google Scholar]
  • Wolter C. 2015. Historic catches, abundance, and decline of Atlantic salmon Salmo salar in the River Elbe. Aquat Sci 77: 367–380. [Google Scholar]
  • Young HS, McCauley DJ, Galetti M, Dirzo R. 2016. Patterns, Causes, and Consequences of Anthropocene Defaunation. Annu Rev Ecol Evol Syst 47: 333–358. [Google Scholar]
  • Zeller D, Rossing P, Harper S, Persson L, Booth S, Pauly D. 2011. The Baltic Sea: estimates of total fisheries removals 1950–2007. Fish Res 108: 356–63. [Google Scholar]
  • Zimmerli S, Bernet D, Burkhardt-Holm P, et al. 2007. Assessment of fish health status in four Swiss rivers showing a decline of brown trout catches. Aquat Sci 69: 11–25. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.