Open Access
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 44
Number of page(s) 10
Published online 01 November 2019
  • Aedo C, Medina L, Barberá, P, Fernández-Albert M. 2015. Extinctions of vascular plants in Spain. Nord J Bot 33: 83–100. [CrossRef] [Google Scholar]
  • Ali MM, Hamad AM, Springuel IV, Murphy KJ. 1995. Environmental factors affecting submerged macrophyte communities in regulated water bodies in Egypt. Arch Hydrobiol 133: 107–128. [Google Scholar]
  • Blank K, Haberman J, Haldna M, Laugaste R. 2009. Effect of winter conditions on spring nutrient concentrations and plankton in a large shallow Lake Peipsi (Estonia/Russia). Aquat Ecol 43: 745–753. [Google Scholar]
  • Degirmendžić J, Kożuchowski K, Żmudzka E. 2004. Changes of air temperature and precipitation in Poland in the period 1951–2000 and their relationship in to atmospheric circulation. Int J Climatol 24: 291–310. [Google Scholar]
  • Dokulil MT, Teubner K, Jagsch A, et al. 2010. The impact of climate change on lakes in Central Europe. In: George G, ed. The Impact of Climate Change on European Lakes. Dordrecht: Springer, pp. 387–410. [CrossRef] [Google Scholar]
  • Dokulil MT. 2016. Climate impacts on ecohydrological processes in aquatic systems. Ecohydrol Hydrobiol 16: 66–70. [CrossRef] [Google Scholar]
  • Ejankowski W, Lenard T. 2014. Trophic state of a shallow lake with reduced inflow of surface water. Arch Environ Prot 40: 3–11. [CrossRef] [Google Scholar]
  • Ejankowski W, Lenard T. 2015. Climate driven changes in the submerged macrophyte and phytoplankton community in a hard water lake. Limnologica 52: 59–66. [Google Scholar]
  • Ejankowski W, Solis M. 2015. Response of hornwort (Ceratophyllum demersum L.) to water level drawdown in a turbid water reservoir. Appl Ecol Environ Res 13: 219–228. [CrossRef] [Google Scholar]
  • Furtak T, Sobolewski W, Turczyński M. 1998. Charakterystyka zlewni jezior. In: Harasimiuk M, Michalczyk Z, Turczyński M, Eds. Jeziora łęczyńsko-włodawskie. Monografia przyrodnicza. Biblioteka Monitoringu Środowiska, Wydawnictwo UMCS, Lublin, pp. 73–91. [Google Scholar]
  • Haslam SM. 1997. The river scene: ecology and cultural heritage. Cambridge: Cambridge University Press, 344 p. [Google Scholar]
  • Hermanowicz W, Dojlido J, Dożańska W, Koziorowski B, Zerbe J. 1999. Fizyczno-chemiczne badanie wody i ścieków. Warszawa: Wyd. Arkady, 556 p. [Google Scholar]
  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J Phycol 35: 403–424. [Google Scholar]
  • Hu H, Hong Y. 2008. Algal-bloom control by allelopathy of aquatic macrophytes—A review. Front Environ Sci Eng China 2: 421–438. [CrossRef] [Google Scholar]
  • Jeppesen E, Lauridsen TL, Kairesalo T, Perrow MR. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K, eds. The structuring role of submerged macrophytes in lakes. New York: Springer, pp. 91–114. [CrossRef] [Google Scholar]
  • Jones I, Sahlberg J, Persson I. 2010. Modelling the impact of climate change on the thermal characteristics of lakes. In: George G, ed. The Impact of Climate Change on European Lakes. Dordrecht: Springer, pp. 103–120. [CrossRef] [Google Scholar]
  • Kaszewski BM, Siwek K, Gluza AF, Siłuch M. 2009. Changes of the selected climatic components in the “West Polesie” Biosphere Reserve during 1951–2006 period. In Chmielewski T, J, Słotwiński C, eds. Nature and Landscape monitoring system in the West Polesie region. Warszawa: Wyd. PZN, pp. 138–152. [Google Scholar]
  • Kirk JTO. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge Univ. Press, 509 p. [Google Scholar]
  • Klimaszyk P, Rzymski P. 2011. Surface runoff as a factor determining trophic state of midforest lake. Pol J Environ Stud 20: 1203–1210. [Google Scholar]
  • Kondracki J. 2002. Geografia regionalna Polski. Warszawa: Wyd. Nauk. PWN, 440 p. [Google Scholar]
  • Kosten S, Jeppesen E, Huszar VLM, et al. 2011. Ambiguous climate impacts on competition between submerged macrophytes and phytoplankton in shallow lakes. Freshw Biol 56: 1540–1553. [Google Scholar]
  • Kurashov EA, Mitrukova GG, Krylova JV. 2018. Interannual variability of low-molecular metabolite composition in Ceratophyllum demersum (Ceratophyllaceae) from a floodplain lake with a changeable trophic status. Contemp Probl Ecol 11: 179–194. [CrossRef] [Google Scholar]
  • Laugaste R, Haberman J, Blank K. 2010. Cool winters versus mild winters: effects on spring plankton in Lake Peipsi. Est J Ecol 59: 163–183. [CrossRef] [Google Scholar]
  • Lenard T, Ejankowski W. 2017. Natural water brownification as a shift in the phytoplankton community in a deep hard water lake. Hydrobiologia 787: 153–166. [Google Scholar]
  • Lenard T, Wojciechowska W. 2013. Phytoplankton diversity and biomass during winter with and without ice cover in the context of climate change. Pol J Ecol 61: 739–748. [Google Scholar]
  • Li E, Li W, Liu G, Yuan L. 2008. The effect of different submerged macrophyte species and biomass on sediment resuspension in a shallow freshwater lake. Aquat Bot 88: 121–126. [Google Scholar]
  • Lu J, Bunn SE, Burford MA. 2018. Nutrient release and uptake by littoral macrophytes during water level fluctuations. Sci Total Environ 622–623: 29–40. [PubMed] [Google Scholar]
  • Magnuson JJ, Robertson DM, Benson BJ, et al. 2000. Historical trends in lake and river ice cover in the northern hemisphere. Science 289: 1743–1746. [Google Scholar]
  • Marszelewski W, Skowron R. 2006. Ice cover as an indicator of winter air temperature changes: Case study of the Polish Lowland lakes. Hydrolog Sci J 51: 336–349. [CrossRef] [Google Scholar]
  • Mohamed ZA. 2017. Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management − A review. Limnologica 63: 122–132. [Google Scholar]
  • Mulderij G, Mooij WM, Smolders AJP, Van Donk E. 2005. Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides . Aquat Bot 82: 284–296. [Google Scholar]
  • Mulderij G, Mau B, van Donk E, Gross EM. 2007. Allelopathic activity of Stratiotes aloides on phytoplankton − towards identification of allelopathic substances. Hydrobiologia 584: 89–100. [Google Scholar]
  • Nõges P, Järvet A, Tuvikene L, Nõges T. 1998. The budgets of nitrogen and phosphorus in shallow eutrophic Lake Võrtsjärv. Hydrobiologia 363: 219–227. [Google Scholar]
  • Nush EA. 1980. Comparison of different methods for chlorophyll and pheopigment determination. Arch Hydrobiol − Beiheft Ergebnisse der Limnologie 14: 14–36. [Google Scholar]
  • Patalas K. 1984. Mid-summer mixing depths of lakes of different latitudes. Int Ver Theor Angew Limnol Verh Verh 22: 97–102. [Google Scholar]
  • Pełechata A, Pełechaty M, Pukacz A. 2015. Winter temperature and shifts in phytoplankton assemblages in a small Chara-lake. Aquat Bot 124: 10–18. [Google Scholar]
  • Pflugmacher S. 2004. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat Toxicol 70: 169–178. [CrossRef] [PubMed] [Google Scholar]
  • Peng S, Piao S, Ciais Ph, Friedlingstein P, Zhou L, Wang T. 2013. Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environ Res Lett 8: 014008. [Google Scholar]
  • Pielou EC. 1975. Ecological diversity. New York: John Wiley & Sons. [Google Scholar]
  • Rojo C, Segura M, Cortes F, Rodrigo MA. 2013. Allelopathic effects of microcystin-LR on the germination, growth and metabolism of five charophyte species and a submerged angiosperm. Aquat Toxicol 144–145: 1–10. [CrossRef] [PubMed] [Google Scholar]
  • Samuelsson P. 2010. Using regional climate models to quantify the impact of climate change on lakes. In: George G, ed. The Impact of Climate Change on European Lakes. Dordrecht: Springer, pp. 15–32. [CrossRef] [Google Scholar]
  • Shannon CE, Wiener W. 1963. The mathematical theory of communication. Urbana, IL: University of Illinois Press. [Google Scholar]
  • Scheffer M, Hosper SH, Meijer M-L., Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8: 275–279. [CrossRef] [PubMed] [Google Scholar]
  • Scheffer M, Van Nes EH. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466. [Google Scholar]
  • Schriver P, Bøgestrand J, Jeppesen E, Søndergaard M. 1995. Impact of submerged macrophytes on fish-zooplanktonphytoplankton interactions: large-scale enclosure experiments in a shallow eutrophic lake. Freshw Biol 33: 255–270. [Google Scholar]
  • Smolders AJP, Lamers LPM, Den Hartog C, Roelofs JGM. 2003. Mechanisms involved in the decline of Stratiotes aloides L. in the Netherlands: sulphate as a key variable. Hydrobiologia 506: 603–610. [Google Scholar]
  • Sokal RR, Rohlf FJ. 1995. Biometry. New York: W.H. Freeman and Company, 887 p. [Google Scholar]
  • Sugier P, Lorens B, Chmiel S, Turczyński M. 2010. The influence of Ceratophyllum demersum L. and Stratiotes aloides L. on richness and diversity of aquatic vegetation in the lakes of mid-eastern Poland. Hydrobiologia 656: 43–53. [Google Scholar]
  • Szigeti ZM, Jambrik K, Roszik J, et al. 2010. Cytoskeletal and developmental alterations in Ceratophyllum demersum induced by microcystin-LR − a cyanobacterial toxin. Aquat Bot 92: 179–184. [Google Scholar]
  • Todd MC, Mackay AW. 2003. Large-scale climatic controls on Lake Baikal ice cover. J Clim 16: 3186–3199. [Google Scholar]
  • Tóth VR, Haradek S. 2011. Seasonal shift of dominance in a submerged rooted macrophyte community of Lake Balaton. Ann Limnol 47: 141–150. [Google Scholar]
  • Utermöhl H. 1958. Zur Vervolkommnung der quantitativen Planktonmethodik. Mitt Int Ver für Theor Angew Limnol 9: 1–38. [Google Scholar]
  • van Donk E, van de Bund W. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat Bot 72: 261–274. [Google Scholar]
  • Weyhenmeyer GA, Meilei M, Livingstone DM. 2004. Nonlinear temperature response of lake ice breakup. Geophys Res Lett 31: L07203. [Google Scholar]
  • Weyhenmeyer GA, Meilei M, Livingstone DM. 2005. Systematic differences in the trend towards earlier ice-out on Swedish lakes along a latitudinal temperature gradient. Verh Intern Verein Limnol 29: 257–260. [Google Scholar]
  • Weyhenmeyer GA, Westöö AK, Willén E. 2008. Increasingly ice-free winters and their effects on water quality in Sweden's largest lakes. Hydrobiologia 599: 111–118. [Google Scholar]
  • Wilgat T, Michalczyk Z, Turczyński M, Wojciechowski K. 1991. The Łęczna-Włodawa Lakes. Studia Ośr Dok Fizjogr PAN 19: 23–140. [Google Scholar]
  • Zingel P, Nõges P, Tuvikene L, et al. 2006. Ecological processes in macrophyte- and phytoplankton-dominated shallow lakes. Proc Estonian Acad Sci Biol Ecol 55: 280–307. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.