Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 42
Number of page(s) 11
DOI https://doi.org/10.1051/kmae/2019034
Published online 25 October 2019
  • Anneville O, Chang CW, Dur G, Souissi S, Rimet F, Hsieh CH. 2019. The paradox of re-oligotrophication: the role of bottom-up versus top-down controls on the phytoplankton community. Oikos , in press. [Google Scholar]
  • Arhonditsis GB, Winder M, Brett MT, Schindler DE. 2004. Patterns and mechanisms of phytoplankton variability in Lake Washington (USA). Water Res 38: 4013–4027. [CrossRef] [PubMed] [Google Scholar]
  • Bigelow JH, Bolten JG, De Haven JC. 1977. Protecting an estuary from floods − a policy analysis of the Oosterschelde: Vol. IV, Assessment of algae blooms, a potential ecological disturbance. Santa Monica, CA: RAND Corporation. [Google Scholar]
  • Bresciani M, Stroppiana D, Odermatt D, Morabito G, Giardino C. 2011. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Sci Total Environ 409: 3083–3091. [CrossRef] [Google Scholar]
  • Capblancq J. 1995. Production primaire autotrophe. In: Pourriot R, Meybeck M, eds. Limnologie générale, Masson, 228–252. [Google Scholar]
  • Chanudet V, Fabre V, Van Der Kaaij T. 2012. Application of a three-dimensional hydrodynamic model to the Nam Theun 2 Reservoir (Lao PDR). J Gt Lakes Res 38: 260–269. [CrossRef] [Google Scholar]
  • European Union (EU). 2000. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. [Google Scholar]
  • Girbaciu A, Girbaciu C, Petcovici E, Dodocioiu AM. 2015. Water Quality Modelling Using Mike 11. Rev Chim 66: 1206–1211. [Google Scholar]
  • Hering D, Borja A, Carstensen J, et al. 2010. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci Total Environ 408: 4007–4019. [CrossRef] [PubMed] [Google Scholar]
  • Jacquet S, Domaizon I, Anneville O. 2014. The need for ecological monitoring of freshwaters in a changing world: a case study of Lakes Annecy, Bourget, and Geneva. Environ Monit Assess 186: 3455–3476. [CrossRef] [PubMed] [Google Scholar]
  • Kacikoc M, Beyhan M. 2014. Hydrodynamic and Water Quality Modeling of Lake Egirdir. Clean-Soil Air Water 42: 1573–1582. [CrossRef] [Google Scholar]
  • Keeler BL, Polasky S, Brauman KA, et al. 2012. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc Natl Acad Sci U S A 109: 18619–18624. [CrossRef] [PubMed] [Google Scholar]
  • Kelly MG, Birk S, Willby NJ, et al. 2016. Redundancy in the ecological assessment of lakes: are phytoplankton, macrophytes and phytobenthos all necessary? Sci Total Environ 568: 594–602. [CrossRef] [Google Scholar]
  • Kiefer I, Odermatt D, Anneville O, Wuest A, Bouffard D. 2015. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake. Sci Total Environ 527: 493–506. [CrossRef] [Google Scholar]
  • Kolada A, Ciecierska H, Ruszczynska J, Dynowski P. 2014. Sampling techniques and inter-surveyor variability as sources of uncertainty in Polish macrophyte metric for lake ecological status assessment. Hydrobiologia 737: 265–279. [CrossRef] [Google Scholar]
  • Lee Z, Shang SL, Qi L, Yan J, Lin G. 2016. A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements. Remote Sens Environ 177: 101–106. [CrossRef] [Google Scholar]
  • Los H. 2009. Eco-hydrodynamic modelling of primary production in coastal waters and lakes using BLOOM. Wageningen University. [Google Scholar]
  • Moe SJ, Solheim AL, Soszka H, et al. 2015. Integrated assessment of ecological status and misclassification of lakes: The role of uncertainty and index combination rules. Ecol Indic 48: 605–615. [CrossRef] [Google Scholar]
  • Padisak J, Borics G, Grigorszky I, Soroczki-Pinter E. 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 553: 1–14. [CrossRef] [Google Scholar]
  • Pahlevan N, Schott JR, Franz BA, et al. 2017. Landsat 8 remote sensing reflectance (R-rs) products: Evaluations, intercomparisons, and enhancements. Remote Sens Environ 190: 289–301. [CrossRef] [Google Scholar]
  • Pasztaleniec A. 2016. An advanced phytoplankton trophic index: test and validation with a nationwide lake survey in Poland. Int Rev Hydrobiol 101: 20–35. [CrossRef] [Google Scholar]
  • Poikane S, Zampoukas N, Borja A, Davies SP, Van De Bund W, Birk S. 2014. Intercalibration of aquatic ecological assessment methods in the European Union: Lessons learned and way forward. Environ Sci Policy 44: 237–246. [CrossRef] [Google Scholar]
  • Porst G, Miler O, Donohue L, Jurca T, et al. 2016. Efficient sampling methodologies for lake littoral invertebrates in compliance with the European Water Framework Directive. Hydrobiologia 767: 207–220. [CrossRef] [Google Scholar]
  • Razmi AM, Barry DA, Bakhtyar R, et al. 2013. Current variability in a wide and open lacustrine embayment in Lake Geneva (Switzerland). J Gt Lakes Res 39: 455–465. [CrossRef] [Google Scholar]
  • Reyjol Y, Argillier C, Bonne W, Borja A, et al. 2014. Assessing the ecological status in the context of the European Water Framework Directive: Where do we go now? Sci Total Environ 497: 332–344. [CrossRef] [PubMed] [Google Scholar]
  • Rimet F, Bouchez A, Tapolczai K. 2016. Spatial heterogeneity of littoral benthic diatoms in a large lake: monitoring implications. Hydrobiologia 771: 179–193. [CrossRef] [Google Scholar]
  • Sondergaard M, Larsen SE, Johansson LS, Lauridsen TL, Jeppesen E. 2016. Ecological classification of lakes: uncertainty and the influence of year-to-year variability. Ecol Indic 61: 248–257. [CrossRef] [Google Scholar]
  • Soulignac F, Danis PA, Bouffard D, et al. 2018. Using 3D modeling and remote sensing capabilities for a better understanding of spatio-temporal heterogeneities of phytoplankton abundance in large lakes. J Gt Lakes Res 44: 756–764. [CrossRef] [Google Scholar]
  • Soulignac F, Vincon-Leite B, Lemaire BJ, et al. 2017. Performance assessment of a 3D hydrodynamic model using high temporal resolution measurements in a shallow urban lake. Environ Model Assess 22: 309–322. [CrossRef] [Google Scholar]
  • Strickland JDH, Parsons TR. 1968. A practical handbook for seawater analysis − Fisheries research board. Ottawa, Canada. [Google Scholar]
  • Tran Khac V, Quetin P, Anneville O. 2018. Evolution physico-chimique des eaux du Léman et données météorologiques. Rapp. Comm. Int. Prot. Eaux Léman contre pollut., Campagne 2017: 18–66. [Google Scholar]
  • Trolle D, Skovgaard H, Jeppesen E. 2008. The Water Framework Directive: Setting the phosphorus loading target for a deep lake in Denmark using the 1D lake ecosystem model DYRESM-CAEDYM. Ecol Model 219: 138–152. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.