Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Topical Issue on Fish Ecology
Article Number 20
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2019012
Published online 11 April 2019
  • Aarestrup K, Økland F, Hansen MM, Righton D, Gargan P, Castonguay M, Bernatchez L, Howey P, Sparholt H, Pedersen MI. 2009. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325: 1660–1660. [CrossRef] [PubMed] [Google Scholar]
  • Béguer-Pon M, Castonguay M, Shan S, Benchetrit J, Dodson JJ. 2015. Direct observations of American eels migrating across the continental shelf to the Sargasso Sea. Nature Commun 6: 8705. [CrossRef] [Google Scholar]
  • Beirão BV, Silva LGM, Brown RS, Walker RW. 2018. Determining barotrauma on the Amazonian catfish Pimelodus pictus experimentally exposed to simulated rapid decompression occurred in hydropower turbines. Mar Freshw Res 69: 19313–1921. [Google Scholar]
  • Boys CA, Robinson W, Miller B, Pflugrath B, Baumgartner LJ, Navarro A, Brown R, Deng Z. 2016. A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure. J Fish Bio 88: 1677–1692. [CrossRef] [Google Scholar]
  • Boys CA, Pflugrath BD, Mueller M, Pander J, Deng Z, Geist J. 2018. Phisical and hydraulic forces experienced by fish passing through three different low-head hydropower turbines. Mar Freshw Res 69: 1937–1944. [Google Scholar]
  • Brown L, Haro A, Castro-Santos T. 2009. Three-dimensional movement of silver-phase American eels in the forebay of a small hydroelectric facility. Am Fish Society Symp 277–291. [Google Scholar]
  • Brown RS, Carlson TJ, Gingerich AJ, Stephenson JR, Pflugrath BD, Welch AE, Langeslay MJ, Ahmann ML, Johnson RL, Skalski JR. 2012a. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage. Trans Am Fish Soc 141: 147–157. [CrossRef] [Google Scholar]
  • Brown RS, Pflugrath BD, Colotelo AH, Brauner CJ, Carlson TJ, Deng ZD, Seaburg AG. 2012b. Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle's law vs. Henry's law. Fish Res 121: 43–50. [CrossRef] [Google Scholar]
  • Brown RS, Cook KV, Pflugrath BD, Rozeboom LL, Johnson RC, McLellan JG, Linley TJ, Gao Y, Baumgartner LJ, Dowell FE. 2013. Vulnerability of larval and juvenile white sturgeon to barotrauma: Can they handle the pressure? Conserv Physiol 1: cot019 [CrossRef] [PubMed] [Google Scholar]
  • Buddendorf WB, Malcolm IA, Geris J, Wilkinson ME, Soulsby C. 2017. Metrics to assess how longitudinal channel network connectivity and in‐stream Atlantic salmon habitats are impacted by hydropower regulation. Hydrol Process 31: 2132–2142. [CrossRef] [Google Scholar]
  • Čada GF. 2001. The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 26: 14–23. [Google Scholar]
  • Calles O, Olsson I, Comoglio C, Kemp P, Blunden L, Schmitz M, Greenberg L. 2010. Size‐dependent mortality of migratory silver eels at a hydropower plant, and implications for escapement to the sea. Freshw Bio 55: 2167–2180. [CrossRef] [Google Scholar]
  • Carr J, Whoriskey F. 2008. Migration of silver American eels past a hydroelectric dam and through a coastal zone. Fish Manag Ecol 15: 393–400. [CrossRef] [Google Scholar]
  • Colotelo AH, Pflugrath BD, Brown RS, Brauner CJ, Mueller RP, Carlson TJ, Deng ZD, Ahmann ML, Trumbo BA. 2012. The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: Implications for passage at hydroelectric facilities. Fish Res 129: 17–20. [CrossRef] [Google Scholar]
  • Coutant CC, Whitney RR. 2000. Fish behavior in relation to passage through hydropower turbines: A review. Trans Am Fish Soc 129: 351–380. [CrossRef] [Google Scholar]
  • Deng Z, Lu J, Myjak MJ, Martinez JJ, Tian C, Morris SJ, Carlson TJ, Zhou D, Hou H. 2014. Design and implementation of a new autonomous sensor fish to support advanced hydropower development. Rev Sci Instrum 85(115001): 1–6. [Google Scholar]
  • Duncan JP. 2011. Characterization of fish passage conditions through a Francis turbine, spillway, and regulating outlet at Detroit Dam, Oregon, using sensor fish, 2009–2010. Richland, Washington, USA: Pacific Northwest National Laboratory, PNNL-20408. [Google Scholar]
  • Duncan JP. 2013. Characterization of fish passage conditions through the fish weir and turbine unit 1 at Foster Dam, Oregon, using sensor fish, 2012. Richland, Washington, USA: Pacific Northwest National Laboratory, PNNL-22236. [CrossRef] [Google Scholar]
  • Duncan JP, Carlson TJ. 2011. Characterization of fish passage conditions through a Francis turbine, spillway, and regulating outlet at Detroit Dam, Oregon, using sensor fish, 2009. Richland, Washington, USA: PNNL-20365. [CrossRef] [Google Scholar]
  • Eyler SM, Welsh SA, Smith DR, Rockey MM. 2016. Downstream passage and impact of turbine shutdowns on survival of silver American eels at five hydroelectric dams on the Shenandoah River. Trans Am Fish Soc 145: 964–976. [CrossRef] [Google Scholar]
  • Fänge R. 1966. Physiology of the swimbladder. Physiol Rev 46: 299–322. [CrossRef] [PubMed] [Google Scholar]
  • Fänge R. 1983. Gas exchange in fish swim bladder. Rev Physiol Biochem Pharmacol 97: 111–158. [CrossRef] [Google Scholar]
  • Fantin-Cruz I, Pedrollo O, Girard P, Zeilhofer P, Hamilton SK. 2016. Changes in river water quality caused by a diversion hydropower dam bordering the Pantanal floodplain. Hydrobiologia 768: 223–238. [CrossRef] [Google Scholar]
  • Francfort JE, Čada GF, Dauble DD, Hunt RT, Jone DW, Rinehart BN, Sommers GL, Costello RJ. 1994. Environmental mitigation at hydroelectric projects: Benefits and costs of fish passage and protection. United States Department of Energy, Idaho Operations Office. [Google Scholar]
  • Fu T, Deng ZD, Duncan JP, Zhou D, Carlson TJ, Johnson GE, Hou H. 2016. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renew Energy 99: 1244–1252. [CrossRef] [Google Scholar]
  • Geer PJ. 2003. Distribution, relative abundance, and habitat use of American eel Anguilla rostrata in the Virginia portion of the Chesapeake Bay. Am Fish Soc Symp 33: 101–115. [Google Scholar]
  • Hammond SD, Welsh SA, Bledsoe K, Dixon DA, Hartman KJ, Mazik P. 2003. Seasonal movements of yellow-phase American eels (Anguilla rostrata) in the Shenandoah River, West Virginia. Doctoral dissertation, Morgantown, West Virginia USA: West Virginia University. [Google Scholar]
  • Haro A, Castro-Santos T, Boubée J. 2000a. Behavior and passage of silver-phase American eels, Anguilla rostrata (LeSueur), at a small hydroelectric facility. Dana 12: 33–42. [Google Scholar]
  • Haro A, Richkus W, Whalen K, Hoar A, Busch W.-D, Lary S, Brush T, Dixon D. 2000b. Population decline of the American eel: Implications for research and management. Fisheries 25: 7–16. [CrossRef] [Google Scholar]
  • Harvey HH. 1963. Pressure in the early life history of sockeye salmon. Doctoral dissertation, British Columbia, Canada: University of British Columbia, Vancouver. [Google Scholar]
  • Hou H, Deng ZD, Martinez JJ, Fu T, Duncan JP, Johnson GE, Lu J, Skalski JR, Townsend RL, Tan L. 2018. A hydropower biological evaluation toolset (HBET) for characterizing hydraulic conditions and impacts of hydro-structures on fish. Energies 11: 990. [CrossRef] [Google Scholar]
  • International Energy Agency. 2017. Key world energy statistics. Paris: International Energy Agency. [Google Scholar]
  • Jager HI. 2006. Chutes and ladders and other games we play with rivers. I. Simulated effects of upstream passage on white sturgeon. Can J Fish Aquatic Sci 63: 165–175. [CrossRef] [Google Scholar]
  • Jansen HM, Winter HV, Bruijs MC, Polman HJ. 2007. Just go with the flow? Route selection and mortality during downstream migration of silver eels in relation to river discharge. ICES J Mar Sci 64: 1437–1443. [Google Scholar]
  • Li X, Deng ZD, Fu T, Brown RS, Martinez JJ, McMichael GA, Trumbo BA, Ahmann ML, Renholds JF, Skalski JR. 2018. Three-dimensional migration behavior of juvenile salmonids in reservoirs and near dams. Sci Rep 8: 956. [CrossRef] [PubMed] [Google Scholar]
  • Liermann CR, Nilsson C, Robertson J, Ng RY. 2012. Implications of dam obstruction for global freshwater fish diversity. BioSci 62: 539–548. [CrossRef] [Google Scholar]
  • McGrath KJ, Dembeck J, McLaren JB, Fairbanks AA, Cluett S. 2002. Surface and midwater trawling for American eels in the St. Lawrence River. Bio Manag Prot Catadromous Eels 33. [Google Scholar]
  • Pelster B. 2013. The Swimbladder. In: Trischitta F, Takei Y, Sébert P, eds. Eel Physiology. Florida, USA, Boca Raton: CRC Press, pp 49–72. [Google Scholar]
  • Pelster B. 2015. Swimbladder function and the spawning migration of the European eel Anguilla anguilla. Front Physiol 4(486): 1–10. [Google Scholar]
  • Pflugrath BD, Brown RS, Carlson TJ. 2012. Maximum neutral buoyancy depth of juvenile Chinook salmon: Implications for survival during hydroturbine passage. Trans Am Fish Soc 141: 520–525. [Google Scholar]
  • Pflugrath BD, Boys CA, Cathers B. 2018. Predicting hydraulic structure-induced barotrauma in Australian fish species. Mar Freshw Re 69: 1954–1961. [CrossRef] [Google Scholar]
  • Pracheil BM, DeRolph CR, Schramm MP, Bevelhimer MS. 2016. A fish-eye view of riverine hydropower systems: The current understanding of the biological response to turbine passage. Rev Fish Biol Fish 26: 153–167. [Google Scholar]
  • Silva LGM, Beirão BV, Falcão RC, de Castro ALF, Dias EW. 2018. Warning, it's a catfish! Novel approaches are needed to study the effects of rapid decompression on benthonic species. Mar Freshw Res 69: 1922–1933. [Google Scholar]
  • Stephenson JR, Gingerich AJ, Brown RS, Pflugrath BD, Deng Z, Carlson TJ, Langeslay MJ, Ahmann ML, Johnson RL, Seaburg AG. 2010. Assessing barotrauma in neutrally and negatively buoyant juvenile salmonids exposed to simulated hydro-turbine passage using a mobile aquatic barotrauma laboratory. Fish Res 106: 271–278. [Google Scholar]
  • Sundnes G, Bratland P. 1972. Notes on the gas content and neutral buoyancy in physostome fish, FiskDir Skr Ser Havunders 16: 89–97. [Google Scholar]
  • Székely C, Palstra A, Molnár K, Van den Thillart G. 2009. Impact of the swim-bladder parasite on the health and performance of European eels. Spawning migration of the European eel. Dordrecht, Netherlands: Springer, pp. 201–226. [CrossRef] [Google Scholar]
  • Tremblay V. 2012. COSEWIC assessment and status report on the American eel Anguilla rostrata in Canada. Ottawa, Canada: COSEWIC. [Google Scholar]
  • Vladykov VD. 1971. Homing of the American eel, Anguilla rostrata, as evidenced by returns of transplanted tagged eels in New Brunswick. Canadian Field-Nat 85: 241–248. [Google Scholar]
  • Watene E, Boubée J. 2005. Selective opening of hydroelectric dam spillway gates for downstream migrant eels in New Zealand. Fish Manag Ecol 12: 69–75. [CrossRef] [Google Scholar]
  • Wenner CA, Musick J. 1974. Fecundity and gonad observations of the American eel, Anguilla rostrata, migrating from Chesapeake Bay, Virginia. J Fish Board Can 31: 1387–1391. [CrossRef] [Google Scholar]
  • Winn H, Richkus W, Winn L. 1975. Sexual dimorphism and natural movements of the American eel (Anguilla rostrata) in Rhode Island streams and estuaries. Helgoländer Wissenschaftliche Meeresuntersuchungen 27: 156. [CrossRef] [Google Scholar]
  • Würtz J. Taraschewski H, Pelster B. 1996. Changes in gas composition in the swimbladder of the European eel (Anguilla anguilla) infected with Anguillicola crassus (Nematoda). Parasitology 112: 233–238. [CrossRef] [PubMed] [Google Scholar]
  • Ziv G, Baran E, Nam S, Rodríguez-Iturbe I, Levin SA. 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc of the Natl Acad Sci 109: 5609–5614. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.