Open Access
Issue
Knowl. Manag. Aquat. Ecosyst.
Number 420, 2019
Article Number 16
Number of page(s) 8
DOI https://doi.org/10.1051/kmae/2019010
Published online 18 March 2019
  • Alvial IE, Tapia DH, Castro MJ, Duran BC, Verdugo CA. 2012. Analysis of benthic macroinvertebrates and biotic indices to evaluate water quality in rivers impacted by mining activities in northern Chile. Know Manag Aquat Ecosyst 407: 01. [Google Scholar]
  • American Public Health Association. 1998. Standard methods for the examination of water and wastewater, 20th ed. Washington DC: APHA-AWWA-WPCF, 1220 p. [Google Scholar]
  • Armitage PD, Moss D, Wright JF, Furse MT. 1983. The performance of a new biological water-quality score system based on macroinvertebrates over a wide-range of unpolluted running-water sites. Water Res 17: 333–347. [Google Scholar]
  • Bartoli M, Nizzoli D, Longhi D, Laini A, Viaroli P. 2007. Impact of a trout farm on the water quality of an Apennine creek from daily budgets of nutrients. Chem Ecol 23: 1–11. [CrossRef] [Google Scholar]
  • Benitez-Mora A, Camargo JA. 2014. Ecological responses of aquatic macrophytes and benthic macroinvertebrates to dams in the Henares River Basin (Central Spain). Hydrobiologia 728: 167–178. [Google Scholar]
  • Boaventura R, Pedro AM, Coimbra J, Lencastre E. 1997. Trout farm effluents: Characterization and impact on the receiving streams. Environ Pollut 95: 379–387. [Google Scholar]
  • Bryce SA, Lomnicky GA, Kaufmann PR. 2010. Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. J N Am Benthol Soc 29: 657–672. [CrossRef] [Google Scholar]
  • Camargo JA. 1993. Macrobenthic surveys as a valuable tool for assessing freshwater quality in the Iberian Peninsula. Environ Monit Assess 24: 71–90. [CrossRef] [PubMed] [Google Scholar]
  • Camargo JA, Alonso A, de la Puente M. 2004. Multimetric assessment of nutrient enrichment in impounded rivers based on benthic macroinvertebrates. Environ Monit Assess 96: 233–249. [CrossRef] [PubMed] [Google Scholar]
  • Camargo JA, Alonso A, de la Puente M. 2005. Eutrophication downstream from small reservoirs in mountain rivers of Central Spain. Water Res 39: 3376–3384. [CrossRef] [PubMed] [Google Scholar]
  • Camargo JA, Gonzalo C, Alonso A. 2011. Assessing trout farm pollution by biological metrics and indices based on aquatic macrophytes and benthic macroinvertebrates: A case study. Ecol Indic 11: 911–917. [Google Scholar]
  • Carr OJ, Goulder R. 1990. Fish farm effluents in rivers: Effects on inorganic nutrients, algae and the macrophyte Ranunculus penicillatus. Water Res 24: 639–647. [Google Scholar]
  • Coondoo D, Dinda S. 2002. Causality between income and emission: A country group-specific econometric analysis. Ecol Econ 40: 351–367. [Google Scholar]
  • Emerson K, Russo RC, Lund RE, Thurston RV. 1975. Aqueous ammonia equilibrium calculations: Effect of pH and temperature. J Fish Res Board Can 32: 2379–2383. [CrossRef] [Google Scholar]
  • Food and Agricultural Organization of the United Nations. 2016. Fishery and Aquaculture Statistics: 2014 Yearbook. Rome: Fisheries and Aquaculture Department, Food and Agricultural Organization of the United Nations. [Google Scholar]
  • Gartzia De Bikuña B, López E, Leonardo JM, Arrate J, Martínez A, Agirre A, Manzanos A. 2015. Reduction of sampling effort assessing macroinvertebrate-assemblages for biomonitoring of rivers. Knowl Manag Aquat Ecosyst 416, 08. [CrossRef] [Google Scholar]
  • Hauer FR, Lamberti GA, eds. 1996. Methods in stream ecology. San Diego (CA): Academic Press, 696 p. [Google Scholar]
  • Hellawell JM. 1986. Biological indicators of freshwater pollution and environmental management. London: Elsevier Applied Science Publishers, 518 p. [CrossRef] [Google Scholar]
  • Lalonde BA, Ernst W, Garron C. 2015. Chemical and physical characterisation of effluents from land-based fish farms in Atlantic Canada. Aquacult Int 23: 535–546. [CrossRef] [Google Scholar]
  • Louhi P, Mykra H, Paavola R, Huusko A, Vehanen T, Maki-Petays A, Muotka T. 2011. Twenty years of stream restoration in Finland: Little response by benthic macroinvertebrate communities. Ecol Appl 21: 1950–1961. [CrossRef] [PubMed] [Google Scholar]
  • MacMillan JR, Huddleston T, Wooley M, Fothergill K. 2003. Best management practice development to minimize environmental impacts from large flow-through trout farms. Aquaculture 226: 91–99. [Google Scholar]
  • Ministerio de Agricultura, Pesca y Alimentación. 2018. Producción Nacional de Acuicultura. Gobierno de España: Ministerio de Agricultura, Pesca y Alimentación. www.mapa.gob.es. [Google Scholar]
  • Minoo CM, Ngugi CC, Oyoo-Okoth E, Muthumbi A, Sigana D, Mulwa R, Chemoiwa EJ. 2016. Monitoring the effects of aquaculture effluents on benthic macroinvertebrate populations and functional feeding responses in a tropical highland headwater stream (Kenya). Aquat Ecosyst Health Manag 19: 431–440. [Google Scholar]
  • Minshall GW, Cummins KW, Petersen RC, Cushing CE, Bruns DA, Sedell JR, Vannote RL. 1985. Developments in stream ecosystem theory. Can J Fish Aquat Sci 42: 1045–1055. [Google Scholar]
  • Odume ON, Muller WJ, Arimoro FO, Palmer CG. 2012. The impact of water quality deterioration on macroinvertebrate communities in the Swartkops River, South Africa: A multimetric approach. African J Aquat Sci 37: 191–200. [CrossRef] [Google Scholar]
  • Petts GE, Armitage PD, Castella E. 1993. Macroinvertebrate response to river regulation: The River Rede, UK. Regul Rivers Res Manage 8: 167–178. [CrossRef] [Google Scholar]
  • Roberts L, Boardman G, Voshell R. 2009. Benthic macroinvertebrate susceptibility to trout farm effluents. Water Environ Res 81: 150–159. [CrossRef] [PubMed] [Google Scholar]
  • Rosenberg DM, Resh VH, eds. 1993. Freshwater biomonitoring and benthic macroinvertebrates. London: Chapman and Hall, 488 p. [Google Scholar]
  • Ruiz-Zarzuela I, Halaihel N, Balcázar JL, Ortega C, Vendrell D, Pérez T, Alonso JL, de Blas I. 2009. Effect of fish farming on the water quality of rivers in northeast Spain. WST 60: 663–671. [CrossRef] [Google Scholar]
  • Sabo JL, Caron M, Doucett R, Dibble KL, Ruhi A, Marks JC, Hungate BA, Kennedy TA. 2018. Pulsed flows, tributary inputs and food‐web structure in a highly regulated river. J Appl Ecol 55: 1884–1895. [Google Scholar]
  • Siddiqi TA. 2000. The Asian financial crisis: Is it good for the global environment? Global Environ Change 10: 1–7. [CrossRef] [Google Scholar]
  • Sindilariu P-D. 2007. Reduction in effluent nutrient loads from flow-through facilities for trout production: A review. Aquacult Res 38: 1005–1036. [CrossRef] [Google Scholar]
  • Sokal RR, Rohlf FJ. 1995. Biometry: The principles and practice of statistics in biological research, 3rd ed. New York: Freeman, 887 p. [Google Scholar]
  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P. 2003. Invertebrés d'eau douce (Systematique, Biologie, Écologie). Paris: CNRS Éditions, 587 p. [Google Scholar]
  • Tello A, Corner RA, Tefler TC. 2010. How do land-based salmonids farms affect stream ecology? Environ Pollut 158: 1147–1158. [Google Scholar]
  • Thorp JH, Covich AP, eds. 2010. Ecology and classification of North American freshwater invertebrates, 3rd ed. San Diego (CA): Academic Press, 1021 p. [Google Scholar]
  • Tong D, Pan L, Chen W, Lamsal L, Lee P, Tang Y, Kim H, Kondragunta S, Stajner I. 2016. Impact of the 2008 global recession on air quality over the United States: Implications for surface ozone levels from changes in NOx emissions. Geophys Res Lett 43: 9280–9288. [Google Scholar]
  • US Environmental Protection Agency. 2013. Aquatic life ambient water quality criteria for ammonia – freshwater. Washington DC: US EPA 822-R-13-001, Office of Water, Office of Science and Technology, 242 p. [Google Scholar]
  • Vannote RL, Minshall CW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Can J Fish Aquat Sci 37: 130–137. [Google Scholar]
  • Verberk WCEP, Leuven RSEW, van Duinen GA, Esselink H. 2010. Loss of environmental heterogeneity and aquatic macroinvertebrate diversity following large-scale restoration management. Basic Appl Ecol 11: 440–449. [CrossRef] [Google Scholar]
  • Verdonschot RCM, Kail J, McKie BG, Verdonschot PFM. 2016. The role of benthic microhabitats in determining the effects of hydromorphological river restoration on macroinvertebrates. Hydrobiologia 769: 55–66. [Google Scholar]
  • Villanueva VD, Queimalinos C, Modenutti B, Ayala J. 2000. Effects of fish farm effluents on the periphyton of an Andean stream. Arch Fish Mar Res 48: 283–294. [Google Scholar]
  • Vrekoussis M, Richter A, Hilboll A, Burrows JP, Gerasopoulos E, Lelieveld J, Barrie L, Zerefos C, Mihalopoulos N. 2013. Economic crisis detected from space: Air quality observations over Athens. Geophys Res Lett 40: 458–463. [Google Scholar]
  • Ward JV, Stanford JA. 1983. The serial discontinuity concept of lotic ecosystems. In: Fontane TD, Bartell SM, eds. Dynamics of lotic ecosystems. Ann Arbor (MI): Ann Arbor Science Publishers, pp. 29–42. [Google Scholar]
  • Webb JA. 2012. Effects of trout farms on stream macroinvertebrates: Linking farm-scale disturbance to ecological impact. Aquacult Environ Interac 3: 23–32. [CrossRef] [Google Scholar]
  • Wood PJ, Armitage PD. 1997. Biological effects of fine sediment in the lotic environment. Environ Manage 21: 203–217. [CrossRef] [PubMed] [Google Scholar]
  • Ziglio G, Siligardi M, Flaim G, eds. 2006. Biological monitoring of rivers. Chichester: Wiley, 485 p. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.